Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Potential new eye tumor treatment discovered

05.08.2011
New research from a team including several Carnegie scientists demonstrates that a specific small segment of RNA could play a key role in the growth of a type of malignant childhood eye tumor called retinoblastoma.

The tumor is associated with mutations of a protein called Rb, or retinoblastoma protein. Dysfunctional Rb is also involved with other types of cancers, including lung, brain, breast and bone. Their work, which will be the cover story of the August 15th issue of Genes & Development, could result in a new therapeutic target for treating this rare form of cancer and potentially other cancers as well.

MicroRNAs are a short, single strands of genetic material that bind to longer strands of messenger RNA--which is the courier that brings the genetic code from the DNA in the nucleus to the cell's ribosome, where it is translated into protein. This binding activity allows microRNAs to silence the expression of select genes in a targeted manner. Abnormal versions of microRNAs have been implicated in the growth of several types of cancer.

The paper from Carnegie's Karina Conkrite, Maggie Sundby and David MacPherson--as well as authors from other institutions—focuses on a cluster of microRNAs called miR-17~92. Recent research has shown that aberrant versions of this cluster are involved in preventing pre-cancerous cells from dying and allowing them to proliferate into tumors. Previous work has shown that miR-17~92 can be involved in the survival of lymphoma and leukemia cells by reducing the levels of a tumor-suppressing protein called PTEN.

The team's new research shows that miR-17~92 can also be involved in retinoblastoma, although it does not act in the same way, via the PTEN protein, as it does in other types of cancers. Rather, miR-17~92 acts to help cells that lack the tumor-suppressing Rb protein to proliferate.

First the team demonstrated that miR-17~92 is expressed in higher-than-usual quantities in all human retinoblastomas examined and in some mouse retinoblastomas. The authors engineered mice to express high levels of miR-17~92 in their retinas. When coupled with inactivation of Rb family members, expression of miR-17~92 led to extremely rapid and aggressive retinoblastoma. Then they showed that this abundance of miR-17~92 acts to suppress an inhibitor of proliferation, called p21Cip1, which is supposed to compensate for the loss of Rb.

"These findings— which show that miR-17~92 overcomes the cell's attempts to compensate for the loss of Rb—could be similar in other types of cancers," MacPherson said. "This microRNA cluster could represent a new therapeutic target for treating tumors caused by Rb deficiency."

The paper is published today on the journal's website.

David MacPherson | EurekAlert!
Further information:
http://www.ciwemb.edu

More articles from Health and Medicine:

nachricht A promising target for kidney fibrosis
21.04.2017 | Brigham and Women's Hospital

nachricht Stem cell transplants: activating signal paths may protect from graft-versus-host disease
20.04.2017 | Technische Universität München

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

DGIST develops 20 times faster biosensor

24.04.2017 | Physics and Astronomy

Nanoimprinted hyperlens array: Paving the way for practical super-resolution imaging

24.04.2017 | Materials Sciences

Atomic-level motion may drive bacteria's ability to evade immune system defenses

24.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>