Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Possible New Combination Treatment for Cancer

20.06.2014

Scientists at the Sahlgrenska Academy have developed a new cancer treatment that has proved to be effective in mice. The treatment, which is presented in the prestigious scientific journal PNAS, is based on newly discovered properties of the so-called BET bromodomain inhibitors.

A few years ago, a molecule known as “JQ1” was developed, which can block so called BET bromodomain proteins. This switch off the known cancer gene MYC thereby preventing cancer cells from dividing.


Jonas Nilsson, Sahlgrenska Cancer Center at the University of Gothenburg

The discovery was regarded as a major breakthrough. A problem was that JQ1 did not function optimally in animal experiments, and this means that it has not been possible to test the treatment on cancer patients.

New molecule

... more about:
»Cancer »HDAC »Treatment »genes »lymphoma »proteins

Jonas Nilsson and his research group have developed, in collaboration with the Canadian company Zenith epigenetics, a new molecule known as “RVX2135”, which has been tested in mice with MYC-driven lymphoma. The study will be published this week in the early edition of the prestigious scientific journal PNAS and shows that the new molecule not only causes cancer cells in culture to stop growing, it also causes tumors to die. This means that the mice survive their cancer longer.

“We hypothesized that the new molecule could also switch off the MYC gene. However, our studies show that neither the JQ1 molecule nor the RVX2135 molecule have this property in these types of cells. This means that the mode of action is probably not as simple as we believed,” says Jonas Nilsson, Group Leader at the Sahlgrenska Cancer Center.

Increased survival in mice

The scientists in Gothenburg also discovered that the RVX2135 molecule activates the same genes as those activated by molecules known as “HDAC inhibitors”, which are already used to treat cancer. The scientists then tested HDAC inhibitors together with the newly discovered molecules and it turned out that the combination increased survival in mice with lymphoma.

“It was also possible to reduce the dose of HDAC inhibitors when used in combination with RVX2135 and this reduced adverse effects. We see this as a breakthrough in the clinical development of this type of treatment,” Jonas Nilsson explains.

Further development

Jonas Nilsson has recently founded the Sahlgrenska Translational Melanoma Group together with surgeons and oncologists at the Sahlgrenska University Hospital. This group will investigate whether the treatment can be used also for malignant melanoma.

“The work is challenging, but we believe that the prospects for success with combination treatments are good,” says Jonas Nilsson.

The article BET and HDAC inhibitors induce similar genes and biological effects and synergize to kill in Myc-induced murine lymphoma will be published online in Proceedings of the National Academy of Sciences on 16 June.

Link to article: http://www.pnas.org/content/early/2014/06/13/1406722111.abstract

More information about the research project: http://www.cancercenter.gu.se/research/nilsson-lab/

Contact:
Jonas Nilsson, Sahlgrenska Cancer Center at the Sahlgrenska Academy, University of Gothenburg
jonas.a.nilsson@surgery.gu.se
Tel.: +46 31 786 6768
Cell: +46 73 027 3039

Weitere Informationen:

http://sahlgrenska.gu.se/english/news_and_events/news/News_Detail/?languageId=10...

Henrik Axlid | idw - Informationsdienst Wissenschaft

Further reports about: Cancer HDAC Treatment genes lymphoma proteins

More articles from Health and Medicine:

nachricht Norovirus evades immune system by hiding out in rare gut cells
12.10.2017 | University of Pennsylvania School of Medicine

nachricht Flexible sensors can detect movement in GI tract
11.10.2017 | Massachusetts Institute of Technology

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Ocean atmosphere rife with microbes

17.10.2017 | Life Sciences

Neutrons observe vitamin B6-dependent enzyme activity useful for drug development

17.10.2017 | Life Sciences

NASA finds newly formed tropical storm lan over open waters

17.10.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>