Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New possibility to determine the severity of appendicitis

21.06.2010
The symptoms of appendicitis are often diffuse and it can be difficult to obtain an accurate diagnosis early in the course of the disease. It may be possible to predict the severity from a blood sample, and in this way determine the treatment on an individual basis. This is the conclusion of a thesis presented at the University of Gothenburg, sweden.

“We don’t know what causes appendicitis. There is evidence that the cause may be multi-factorial, since some patients gets a perforated appendix while the course is less severe in others. The course of the disease is unpredictable and typical symptoms do not appear in a third of cases. It would be better”, says Anna Solberg, one of the scientists at the Fibrinolysis Laboratory at the Sahlgrenska Academy, and specialist at the Surgical Clinic at Sahlgrenska University Hospital, “if we didn’t treat all patients in the same way. Each case is unique.”

Patients often are sent for surgery to be on the safe side, only to discover that the appendix was not inflamed. It is possible that antibiotics or observation alone would have been sufficient in many cases, and the patients would not have needed to undergo surgery. But the appendix perforates in 20% of patients leading to an increased risk for complications such as wound infections, abscesses in the abdominal cavity and the formation of adhesions, which can in turn lead to bowel obstruction and further surgery.

“The work presented in the thesis shows how enzymes known as proteases, which break down tissue, are distributed at and around the region which the appendix has perforated. Tissue samples have been taken at different grades or stages of appendicitis in order to investigate whether the quantities of proteases are correlated with the severity of the inflammation,” says Anna Solberg.

The results show that there is an imbalance between the proteases and the anti-protease, TIMP-1, with the task to inhibit the enzymes that break down tissue. It turns out that this imbalance is important for how damage to the tissue can lead to perforation of the appendix.

“This means that we know more about the molecular mechanisms behind the process that can lead to a perforated appendix”, says Anna Solberg.

Furthermore, TIMP-1 reflected the degree of inflammation in the blood at the time for surgery. It is possible that a blood sample measuring the amount of TIMP-1 could become a part of the clinical diagnostic process in the future, and thus determines the severity of the inflammation. However, Anna Solberg points out that more studies with repeated blood samples taken during the course of the disease are required.

“I plan to continue research in the field in order to see whether TIMP-1 can function as a marker of inflammation, in order to determine the diagnosis and predict the disease course. This could lead to more focussed surgery, fewer complications and shorter hospital stays, and it could improve the possibility of giving individual treatment, which also considers the risk of increased resistance to antibiotics.”

APPENDICITIS
Appendicitis is an acute inflammation of the appendix. It is the most common reason for acute abdominal surgery in the western world, and approximately 12,500 patients undergo surgery for the condition each year in Sweden. Typical symptoms are tenderness in the lower right area of the abdomen, nausea, occasional vomiting and fever. It can be treated by surgery, or by antibiotics alone. The inflammation may also resolve spontaneously.
For more information, contact:
Specialist Anna Solberg,
+46 31 343 4429
+46 31 343 4429
+46 708 329330
e-mail:anna.solberg@surgery.gu.se
A thesis presented for the degree of Doctor of Philosophy (Medicine) at the Sahlgrenska Academy, Institute of Clinical Sciences, Department of Surgery.
Title of the thesis: Extracellular matrix remodelling proteases in acute appendicitis and their impact on appendiceal perforation

The thesis has been successfully defended.

The full text of the thesis is available from http://hdl.handle.net/2077/22259

Helena Aaberg | idw
Further information:
http://hdl.handle.net/2077/22259
http://www.gu.se

More articles from Health and Medicine:

nachricht Biofilm discovery suggests new way to prevent dangerous infections
23.05.2017 | University of Texas at Austin

nachricht Another reason to exercise: Burning bone fat -- a key to better bone health
19.05.2017 | University of North Carolina Health Care

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

Physicists discover mechanism behind granular capillary effect

24.05.2017 | Physics and Astronomy

Measured for the first time: Direction of light waves changed by quantum effect

24.05.2017 | Physics and Astronomy

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>