Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New possibility to determine the severity of appendicitis

21.06.2010
The symptoms of appendicitis are often diffuse and it can be difficult to obtain an accurate diagnosis early in the course of the disease. It may be possible to predict the severity from a blood sample, and in this way determine the treatment on an individual basis. This is the conclusion of a thesis presented at the University of Gothenburg, sweden.

“We don’t know what causes appendicitis. There is evidence that the cause may be multi-factorial, since some patients gets a perforated appendix while the course is less severe in others. The course of the disease is unpredictable and typical symptoms do not appear in a third of cases. It would be better”, says Anna Solberg, one of the scientists at the Fibrinolysis Laboratory at the Sahlgrenska Academy, and specialist at the Surgical Clinic at Sahlgrenska University Hospital, “if we didn’t treat all patients in the same way. Each case is unique.”

Patients often are sent for surgery to be on the safe side, only to discover that the appendix was not inflamed. It is possible that antibiotics or observation alone would have been sufficient in many cases, and the patients would not have needed to undergo surgery. But the appendix perforates in 20% of patients leading to an increased risk for complications such as wound infections, abscesses in the abdominal cavity and the formation of adhesions, which can in turn lead to bowel obstruction and further surgery.

“The work presented in the thesis shows how enzymes known as proteases, which break down tissue, are distributed at and around the region which the appendix has perforated. Tissue samples have been taken at different grades or stages of appendicitis in order to investigate whether the quantities of proteases are correlated with the severity of the inflammation,” says Anna Solberg.

The results show that there is an imbalance between the proteases and the anti-protease, TIMP-1, with the task to inhibit the enzymes that break down tissue. It turns out that this imbalance is important for how damage to the tissue can lead to perforation of the appendix.

“This means that we know more about the molecular mechanisms behind the process that can lead to a perforated appendix”, says Anna Solberg.

Furthermore, TIMP-1 reflected the degree of inflammation in the blood at the time for surgery. It is possible that a blood sample measuring the amount of TIMP-1 could become a part of the clinical diagnostic process in the future, and thus determines the severity of the inflammation. However, Anna Solberg points out that more studies with repeated blood samples taken during the course of the disease are required.

“I plan to continue research in the field in order to see whether TIMP-1 can function as a marker of inflammation, in order to determine the diagnosis and predict the disease course. This could lead to more focussed surgery, fewer complications and shorter hospital stays, and it could improve the possibility of giving individual treatment, which also considers the risk of increased resistance to antibiotics.”

APPENDICITIS
Appendicitis is an acute inflammation of the appendix. It is the most common reason for acute abdominal surgery in the western world, and approximately 12,500 patients undergo surgery for the condition each year in Sweden. Typical symptoms are tenderness in the lower right area of the abdomen, nausea, occasional vomiting and fever. It can be treated by surgery, or by antibiotics alone. The inflammation may also resolve spontaneously.
For more information, contact:
Specialist Anna Solberg,
+46 31 343 4429
+46 31 343 4429
+46 708 329330
e-mail:anna.solberg@surgery.gu.se
A thesis presented for the degree of Doctor of Philosophy (Medicine) at the Sahlgrenska Academy, Institute of Clinical Sciences, Department of Surgery.
Title of the thesis: Extracellular matrix remodelling proteases in acute appendicitis and their impact on appendiceal perforation

The thesis has been successfully defended.

The full text of the thesis is available from http://hdl.handle.net/2077/22259

Helena Aaberg | idw
Further information:
http://hdl.handle.net/2077/22259
http://www.gu.se

More articles from Health and Medicine:

nachricht 'Living bandages': NUST MISIS scientists develop biocompatible anti-burn nanofibers
16.02.2018 | National University of Science and Technology MISIS

nachricht New process allows tailor-made malaria research
16.02.2018 | Eberhard Karls Universität Tübingen

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

Im Focus: Interference as a new method for cooling quantum devices

Theoretical physicists propose to use negative interference to control heat flow in quantum devices. Study published in Physical Review Letters

Quantum computer parts are sensitive and need to be cooled to very low temperatures. Their tiny size makes them particularly susceptible to a temperature...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Rare find from the deep sea

20.02.2018 | Life Sciences

In living color: Brightly-colored bacteria could be used to 'grow' paints and coatings

20.02.2018 | Life Sciences

Observing and controlling ultrafast processes with attosecond resolution

20.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>