Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Poor sleep in old age prevents the brain from storing memories

28.01.2013
Findings suggest boosting 'slow wave' sleep could restore memory as we age

The connection between poor sleep, memory loss and brain deterioration as we grow older has been elusive. But for the first time, scientists at the University of California, Berkeley, have found a link between these hallmark maladies of old age. Their discovery opens the door to boosting the quality of sleep in elderly people to improve memory.

UC Berkeley neuroscientists have found that the slow brain waves generated during the deep, restorative sleep we typically experience in youth play a key role in transporting memories from the hippocampus – which provides short-term storage for memories – to the prefrontal cortex's longer term "hard drive."

However, in older adults, memories may be getting stuck in the hippocampus due to the poor quality of deep 'slow wave' sleep, and are then overwritten by new memories, the findings suggest.

"What we have discovered is a dysfunctional pathway that helps explain the relationship between brain deterioration, sleep disruption and memory loss as we get older – and with that, a potentially new treatment avenue," said UC Berkeley sleep researcher Matthew Walker, an associate professor of psychology and neuroscience at UC Berkeley and senior author of the study to be published this Sunday, Jan. 27, in the journal Nature Neuroscience.

The findings shed new light on some of the forgetfulness common to the elderly that includes difficulty remembering people's names.

"When we are young, we have deep sleep that helps the brain store and retain new facts and information," Walker said. "But as we get older, the quality of our sleep deteriorates and prevents those memories from being saved by the brain at night."

Healthy adults typically spend one-quarter of the night in deep, non-rapid-eye-movement (REM) sleep. Slow waves are generated by the brain's middle frontal lobe. Deterioration of this frontal region of the brain in elderly people is linked to their failure to generate deep sleep, the study found.

The discovery that slow waves in the frontal brain help strengthen memories paves the way for therapeutic treatments for memory loss in the elderly, such as transcranial direct current stimulation or pharmaceutical remedies. For example, in an earlier study, neuroscientists in Germany successfully used electrical stimulation of the brain in young adults to enhance deep sleep and doubled their overnight memory.

UC Berkeley researchers will be conducting a similar sleep-enhancing study in older adults to see if it will improve their overnight memory. "Can you jumpstart slow wave sleep and help people remember their lives and memories better? It's an exciting possibility," said Bryce Mander, a postdoctoral fellow in psychology at UC Berkeley and lead author of this latest study.

For the UC Berkeley study, Mander and fellow researchers tested the memory of 18 healthy young adults (mostly in their 20s) and 15 healthy older adults (mostly in their 70s) after a full night's sleep. Before going to bed, participants learned and were tested on 120 word sets that taxed their memories.

As they slept, an electroencephalographic (EEG) machine measured their brain wave activity. The next morning, they were tested again on the word pairs, but this time while undergoing functional and structural Magnetic Resonance Imaging (fMRI) scans.

In older adults, the results showed a clear link between the degree of brain deterioration in the middle frontal lobe and the severity of impaired "slow wave activity" during sleep. On average, the quality of their deep sleep was 75 percent lower than that of the younger participants, and their memory of the word pairs the next day was 55 percent worse.

Meanwhile, in younger adults, brain scans showed that deep sleep had efficiently helped to shift their memories from the short-term storage of the hippocampus to the long-term storage of the prefrontal cortex.

Co-authors of the study are William Jagust, Vikram Rao, Jared Saletin and John Lindquist of UC Berkeley; Brandon Lu of the California Pacific Medical Center and Sonia Ancoli-Israel of UC San Diego.

Yasmin Anwar | EurekAlert!
Further information:
http://www.berkeley.edu

More articles from Health and Medicine:

nachricht Penn study identifies viral product that promotes immune defense against RSV
04.09.2015 | University of Pennsylvania

nachricht Columbia Engineering team develops targeted drug delivery to lung
03.09.2015 | Columbia University School of Engineering and Applied Science

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Hubble survey unlocks clues to star birth in neighboring galaxy

In a survey of NASA's Hubble Space Telescope images of 2,753 young, blue star clusters in the neighboring Andromeda galaxy (M31), astronomers have found that M31 and our own galaxy have a similar percentage of newborn stars based on mass.

By nailing down what percentage of stars have a particular mass within a cluster, or the Initial Mass Function (IMF), scientists can better interpret the light...

Im Focus: Fraunhofer ISE Develops Highly Compact Inverter for Uninterruptible Power Supplies

Silicon Carbide Components Enable Efficiency of 98.7 percent

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE have developed a highly compact and efficient inverter for use in uninterruptible power...

Im Focus: How wind sculpted Earth's largest dust deposit

China's Loess Plateau was formed by wind alternately depositing dust or removing dust over the last 2.6 million years, according to a new report from University of Arizona geoscientists. The study is the first to explain how the steep-fronted plateau formed.

China's Loess Plateau was formed by wind alternately depositing dust or removing dust over the last 2.6 million years, according to a new report from...

Im Focus: An engineered surface unsticks sticky water droplets

The leaves of the lotus flower, and other natural surfaces that repel water and dirt, have been the model for many types of engineered liquid-repelling surfaces. As slippery as these surfaces are, however, tiny water droplets still stick to them. Now, Penn State researchers have developed nano/micro-textured, highly slippery surfaces able to outperform these naturally inspired coatings, particularly when the water is a vapor or tiny droplets.

Enhancing the mobility of liquid droplets on rough surfaces could improve condensation heat transfer for power-plant heat exchangers, create more efficient...

Im Focus: Increasingly severe disturbances weaken world's temperate forests

Longer, more severe, and hotter droughts and a myriad of other threats, including diseases and more extensive and severe wildfires, are threatening to transform some of the world's temperate forests, a new study published in Science has found. Without informed management, some forests could convert to shrublands or grasslands within the coming decades.

"While we have been trying to manage for resilience of 20th century conditions, we realize now that we must prepare for transformations and attempt to ease...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Together - Work - Experience

03.09.2015 | Event News

Networking conference in Heidelberg for outstanding mathematicians and computer scientists

20.08.2015 | Event News

Scientists meet in Münster for the world’s largest Chitin und Chitosan Conference

20.08.2015 | Event News

 
Latest News

Ion implanted, co-annealed, screen-printed 21% efficient n-PERT solar cells with a bifaciality >97%

04.09.2015 | Power and Electrical Engineering

Casting of SiSiC: new perspectives for chemical and plant engineering

04.09.2015 | Machine Engineering

Extremely thin ceramic components made possible by extrusion

04.09.2015 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>