Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Poor sleep in old age prevents the brain from storing memories

28.01.2013
Findings suggest boosting 'slow wave' sleep could restore memory as we age

The connection between poor sleep, memory loss and brain deterioration as we grow older has been elusive. But for the first time, scientists at the University of California, Berkeley, have found a link between these hallmark maladies of old age. Their discovery opens the door to boosting the quality of sleep in elderly people to improve memory.

UC Berkeley neuroscientists have found that the slow brain waves generated during the deep, restorative sleep we typically experience in youth play a key role in transporting memories from the hippocampus – which provides short-term storage for memories – to the prefrontal cortex's longer term "hard drive."

However, in older adults, memories may be getting stuck in the hippocampus due to the poor quality of deep 'slow wave' sleep, and are then overwritten by new memories, the findings suggest.

"What we have discovered is a dysfunctional pathway that helps explain the relationship between brain deterioration, sleep disruption and memory loss as we get older – and with that, a potentially new treatment avenue," said UC Berkeley sleep researcher Matthew Walker, an associate professor of psychology and neuroscience at UC Berkeley and senior author of the study to be published this Sunday, Jan. 27, in the journal Nature Neuroscience.

The findings shed new light on some of the forgetfulness common to the elderly that includes difficulty remembering people's names.

"When we are young, we have deep sleep that helps the brain store and retain new facts and information," Walker said. "But as we get older, the quality of our sleep deteriorates and prevents those memories from being saved by the brain at night."

Healthy adults typically spend one-quarter of the night in deep, non-rapid-eye-movement (REM) sleep. Slow waves are generated by the brain's middle frontal lobe. Deterioration of this frontal region of the brain in elderly people is linked to their failure to generate deep sleep, the study found.

The discovery that slow waves in the frontal brain help strengthen memories paves the way for therapeutic treatments for memory loss in the elderly, such as transcranial direct current stimulation or pharmaceutical remedies. For example, in an earlier study, neuroscientists in Germany successfully used electrical stimulation of the brain in young adults to enhance deep sleep and doubled their overnight memory.

UC Berkeley researchers will be conducting a similar sleep-enhancing study in older adults to see if it will improve their overnight memory. "Can you jumpstart slow wave sleep and help people remember their lives and memories better? It's an exciting possibility," said Bryce Mander, a postdoctoral fellow in psychology at UC Berkeley and lead author of this latest study.

For the UC Berkeley study, Mander and fellow researchers tested the memory of 18 healthy young adults (mostly in their 20s) and 15 healthy older adults (mostly in their 70s) after a full night's sleep. Before going to bed, participants learned and were tested on 120 word sets that taxed their memories.

As they slept, an electroencephalographic (EEG) machine measured their brain wave activity. The next morning, they were tested again on the word pairs, but this time while undergoing functional and structural Magnetic Resonance Imaging (fMRI) scans.

In older adults, the results showed a clear link between the degree of brain deterioration in the middle frontal lobe and the severity of impaired "slow wave activity" during sleep. On average, the quality of their deep sleep was 75 percent lower than that of the younger participants, and their memory of the word pairs the next day was 55 percent worse.

Meanwhile, in younger adults, brain scans showed that deep sleep had efficiently helped to shift their memories from the short-term storage of the hippocampus to the long-term storage of the prefrontal cortex.

Co-authors of the study are William Jagust, Vikram Rao, Jared Saletin and John Lindquist of UC Berkeley; Brandon Lu of the California Pacific Medical Center and Sonia Ancoli-Israel of UC San Diego.

Yasmin Anwar | EurekAlert!
Further information:
http://www.berkeley.edu

More articles from Health and Medicine:

nachricht Vanishing capillaries
23.03.2017 | Technische Universität München

nachricht How prenatal maternal infections may affect genetic factors in Autism spectrum disorder
22.03.2017 | University of California - San Diego

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Inactivate vaccines faster and more effectively using electron beams

23.03.2017 | Life Sciences

New study maps space dust in 3-D

23.03.2017 | Physics and Astronomy

Tracing aromatic molecules in the early universe

23.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>