Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

PolyU discovers a newly emerged superbug

01.09.2017

The Partner State Key Laboratory of Chirosciences at the Department of Applied Biology and Chemical Technology (ABCT) of The Hong Kong Polytechnic University (PolyU) discovered a newly emerged superbug, hyper-resistant and hypervirulent Klebsiella pneumoniae, which may cause untreatable and fatal infections in relatively healthy individuals and will pose enormous threat to human health.

Prof. Chen Sheng, Professor of ABCT, collaborating with Prof. Rong Zhang from the Second Affiliated Hospital of Zhejiang University, conducted an investigation into a fatal outbreak of pneumonia in the Second Affiliated Hospital of Zhejiang University in China in February 2016. The study involved five patients who underwent surgical operation for multiple-trauma.


Professor Chen Sheng, Professor of PolyU's Department of Applied Biology and Chemical Technology, discovered a newly emerged superbug, hyper-resistant and hypervirulent Klebsiella pneumoniae.

Credit: The Hong Kong Polytechnic University

All of them were later infected in the intensive care unit (ICU) and developed severe pneumonia, and eventually died of septicaemia and multiple organ failure. The causative agent of these five patients was found to be a carbapenem-resistant K. pneumoniae (CRKP) strain, a type of previously-defined superbug.

Furthermore, these CRKP strains are also hypervirulent and belong to ST11 type of CRKP, the most prevalent and transmissible CRKP strains in Asia. As these strains simultaneously exhibit the features of hyper-resistance, hypervirulence and high transmissibility, they can be considered a real superbug known as ST11 CR-HvKP (ST11 carbapenem-resistant hypervirulent K. pneumoniae).

ST11 K. pneumoniae strains proliferate in the gastrointestinal tract (GI tract) of human and animals and may cause opportunistic infections such as pneumonia in clinical settings. These strains, after acquiring plasmid encoding a carbapenemase gene, become resistant to the carbapenem antibiotics and caused untreatable or hard-to-be treated infections, therefore defined as superbug.

These superbug strains could further evolve to become ST11 CR-HvKP through acquisition of the hypervirulence plasmids. The ST11 CR-HvKP strains do not only infect lungs and cause pneumonia, but also invade the bloodstream and other internal organs. Due to its hypervirulence and phenotypic resistance to commonly used antibiotics, ST11 CR-HvKP strains may cause untreatable and fatal infections in relatively healthy individuals with normal immunity.

ST11 CR-HvKP strains possess a mucoid outer layer, which enables them to stick to various materials, such as the surface of medical devices and tubing as well as other surfaces in the ICU. The transmission route is not clear yet, but our data suggest that medical equipment such as ventilator and different catheters might be transmitting these new superbug strains. Human-to-human transmission may also be possible, mainly in hospital settings.

Improved infection prevention and control policy in hospital seems to be effective to control further transmission of this superbug in the ICU. Novel strategies must be devised to prevent ST11 CR-HvKP from proliferating extensively in the human intestinal tract where they were detected. ST11 CR-HvKP can easily be detectable by the Polymerase chain reaction (PCR) method, targeting specific resistance and virulence genes.

The study showed that the use of colistin (the last resort drug for carbapenem-resistant enterobacteriaceae infections) alone or in combination with other drugs were not very effective in treating infections caused by ST11 CR-HvKP. Ceftazidime/avibactam may be the effective antibiotic, but ST11 CR-HvKP may develop resistance to this antibiotic very quickly based on the clinical data from the USA.

Prevalence of ST11 CR-HvKP strains in Hong Kong is currently unknown. Two studies conducted in Hong Kong have shown that mortality rate due to K. pneumoniae-mediated bloodstream infections was high, reaching 20% and 32% respectively. We plan to collaborate with clinicians in local hospitals to investigate the proportion of clinical K. pneumoniae isolates that belong to HvKP or CR-HvKP, and characterize their genetic features.

This study is recently published in the prestigious academic journal The Lancet Infectious Diseases. The full article can be accessed via the link: http://www.thelancet.com/journals/laninf/article/PIIS1473-3099(17)30489-9/fulltext.

Media Contact

Christina Wu
christina.wu@polyu.edu.hk
852-340-02130

http://www.polyu.edu.hk 

Christina Wu | EurekAlert!

More articles from Health and Medicine:

nachricht Discovery of drug combination: Overcoming resistance to targeted drugs for liver cancer
31.08.2017 | The Korea Advanced Institute of Science and Technology (KAIST)

nachricht New treatment options for type 2 diabetes
30.08.2017 | Stellenbosch University

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Life-long implants – vision and state of the art

Fraunhofer Institutes FEP and IWU have merged their expertise in order to advance a new generation of medical implants.

Implants are routinely employed in hospitals and dental practices daily. They are technologically mature and offer support for people in many different ways....

Im Focus: Green Light for New 3D Printing Process

Premier at formnext: Additive Manufacturing of Copper Materials Using Selective Laser Melting with Green Light

An innovation in the field of additive manufacturing will make its debut from November 14–17 at this year’s formnext in Frankfurt, Germany: the Fraunhofer...

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Is the world on the brink of a computing revolution? – Quantum computing at the 5th HLF

31.08.2017 | Event News

Computers bridge the gap between theory and experiment in neuroscience

30.08.2017 | Event News

Save the Date! AKL’18 from May 2 - 4, 2018

29.08.2017 | Event News

 
Latest News

Chemo-boosting drug discovered for leukemia

01.09.2017 | Life Sciences

Biologists find new source for brain's development

01.09.2017 | Life Sciences

PolyU discovers a newly emerged superbug

01.09.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>