Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Pleasure eating triggers body's reward system and may stimulate overeating

03.05.2012
New study finds possible link between the hormone ghrelin and hedonic eating

When eating is motivated by pleasure, rather than hunger, endogenous rewarding chemical signals are activated which can lead to overeating, according to a recent study accepted for publication in The Endocrine Society's Journal of Clinical Endocrinology & Metabolism (JCEM). The phenomenon ultimately affects body mass and may be a factor in the continuing rise of obesity.

"'Hedonic hunger' refers to the desire to eat for pleasure, and to enjoy the taste, rather than to restore the body's energy needs,"says Palmiero Monteleone, MD, of the University of Naples SUN in Italy and lead author of this study. "For example, desiring and eating a piece of cake even after a satiating meal is consumption driven by pleasure and not by energy deprivation. The physiological process underlying hedonic eating is not fully understood, but it is likely that endogenous substances regulating reward mechanisms like the hormone ghrelin and chemical compounds such as 2-arachidonoylglycerol (2-AG) are involved."

In this study, researchers assessed eight satiated healthy adults, aged 21 years, feeding them each their personal favorite food and, later, a less-palatable food of equal caloric and nutrient value. Researchers periodically measured 2-AG and ghrelin levels. The plasma levels of ghrelin and 2-AG increased during hedonic eating, with the favorite foods, but not with non-hedonic eating. This increase suggests an activation of the chemical reward system, which overrides the body's signal that enough has been eaten to restore energy.

"Hedonic hunger may powerfully stimulate overeating in an environment where highly palatable foods are omnipresent, and contribute to the surge in obesity,"says Monteleone. "Understanding the physiological mechanisms underlying this eating behaviour may shed some light on the obesity epidemic. Further research should confirm and extend our results to patients with obesity or with other eating disorders in order to better understand the phenomenon of hedonic eating."

Other researchers working on the study include: Pasquale Scognamiglio, Alessio Maria Monteleone, Benedetta Canestrelli, and Mario Maj of the University of Naples SUN, Naples, Italy; and Fabiana Piscitelli and Vincenzo Di Marzo of the Institute of Biomolecular Chemistry, Pozzuli, Italy.

The article, "Hedonic eating is associated with increased peripheral levels of ghrelin and the endocannabinoid 2-arachidonoyl-glycerol in healthy humans. A pilot study," appears in the June 2012 issue of JCEM.

Founded in 1916, The Endocrine Society is the world's oldest, largest and most active organization devoted to research on hormones and the clinical practice of endocrinology. Today, The Endocrine Society's membership consists of over 15,000 scientists, physicians, educators, nurses and students in more than 100 countries. Society members represent all basic, applied and clinical interests in endocrinology. The Endocrine Society is based in Chevy Chase, Maryland. To learn more about the Society and the field of endocrinology, visit our site at www.endo-society.org. Follow us on Twitter at https://twitter.com/#!/EndoMedia.

Aaron Lohr | EurekAlert!
Further information:
http://www.endo-society.org

More articles from Health and Medicine:

nachricht Researchers identify cause of hereditary skeletal muscle disorder
22.02.2017 | Klinikum der Universität München

nachricht Second cause of hidden hearing loss identified
20.02.2017 | Michigan Medicine - University of Michigan

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Microhotplates for a smart gas sensor

22.02.2017 | Power and Electrical Engineering

Scientists unlock ability to generate new sensory hair cells

22.02.2017 | Life Sciences

Prediction: More gas-giants will be found orbiting Sun-like stars

22.02.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>