Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Plasma makes wounds heal quicker

09.06.2015

Many people suffer from skin disorders. Open wounds are a particularly acute problem, especially among the elderly. PlasmaDerm, a new medical technology solution, uses plasma to facilitate faster healing of wounds.

Skin disorders are a common problem in this part of the world. Atopic dermatitis, psoriasis and chronic venous leg ulcers – typically caused by diabetes or varicose veins – can cause patients years of suffering.


From left to right: Dr. Helmke, Dr. Wandke (Cinogy GmbH), Prof. Viöl and Prof. Emmert (University Medical Center Göttingen) developed the PlasmaDerm solution that makes wounds heal faster.

Dirk Mahler/Fraunhofer

Working in collaboration with the company Cinogy and the Department of Dermatology, Venereology and Allergology at the University Medical Center Göttingen, the Fraunhofer Institute for Surface Engineering and Thin Films IST has successfully developed a new medical technology solution for treating wounds and skin disorders known as “PlasmaDerm”. Plasma promotes wound healing when it is generated directly on the skin.

“All you feel is a slight tingling sensation,” says Prof. Wolfgang Viöl from Fraunhofer IST, moving a device approximately the size and shape of a pocket flashlight in small circles over the back of his hand. Holding the device just over the skin, a faint purple mist can just barely be seen at the device’s tip. That’s plasma, he explains – an ionized gas.

PlasmaDerm – which was developed by a team consisting of medical professionals, biologists, physicists and engineers – is a novel solution. For the first time, the device generates a non-thermal or “cold” plasma directly on the skin at atmospheric pressure.

The patented method involves placing the electrode of the device close to the skin, with the skin itself acting as the second electrode. A high voltage is then applied across the gap, and the resulting electric fields convert the area between the electrode and the skin into non-thermal plasma.

PlasmaDerm is safe and painless

Since cold plasma has not been used on human beings before, the top priority of the Fraunhofer IST was to evaluate the safety of the solution. “We carried out a risk-benefit analysis to evaluate all the chemical and physical parameters and concluded that there is no reason to be concerned about using plasma on people,” says Dr. Andreas Helmke, describing how Fraunhofer IST went about the process.

A clinical study conducted by Prof. Steffen Emmert at the Department of Dermatology, Venereology and Allergology at the University Medical Center Göttingen revealed an antiseptic effect and improved wound healing. But Prof. Emmert explains that the greatest benefit of the application is the fact that “non-thermal plasma actually combines the mechanisms of different therapies.

UV, ozone and electrotherapy are already available, but plasma achieves a better effect in a shorter period of time.” Plasma reduces the bacteria count on the skin’s surface, while the electric field simultaneously boosts the skin’s microcirculation by allowing more oxygen to be delivered. These are both decisive factors in improving wound healing.

To enable the new method to be applied more flexibly, the researchers needed to develop a portable device. To do this, the Fraunhofer IST worked together with the company Cinogy. “We had to develop a device that was small but capable of generating high voltages.

The result is only about the size of a laptop and can be plugged into a normal socket between 100 and 230 V,” says Dr. Dirk Wandke, managing director of Cinogy, describing how they tackled the project’s biggest challenge. PlasmaDerm is now available all over Europe.

For Prof. Viöl, PlasmaDerm has inspired a vision. But the researcher has an even more ambitious vision. “I anticipate that in the future, a child who falls off a skateboard could be treated at home. Parents could care for the wound using a small PlasmaDerm stick instead of iodine. And I could even imagine the device itself being able to measure what’s wrong with somebody’s skin and then adjust the dose accordingly and start the physical treatment.”

Prof. Wolfgang Viöl, Dr. Andreas Helmke, Prof. Steffen Emmert and Dr. Dirk Wandke jointly accepted a Fraunhofer Prize in the Human-Centered Technology category for their development of PlasmaDerm.

Weitere Informationen:

http://www.fraunhofer.de/en/press/fraunhofer-awards-ceremony-2015/plasma-makes-w...

Dr. Simone Kondruweit-Reinema | Fraunhofer Research News

Further reports about: Allergology Plasma Surface Thin disorders electrode explains healing method skin wound healing wounds wounds heal

More articles from Health and Medicine:

nachricht Team discovers how bacteria exploit a chink in the body's armor
20.01.2017 | University of Illinois at Urbana-Champaign

nachricht Rabies viruses reveal wiring in transparent brains
19.01.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>