Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Plasma makes wounds heal quicker

09.06.2015

Many people suffer from skin disorders. Open wounds are a particularly acute problem, especially among the elderly. PlasmaDerm, a new medical technology solution, uses plasma to facilitate faster healing of wounds.

Skin disorders are a common problem in this part of the world. Atopic dermatitis, psoriasis and chronic venous leg ulcers – typically caused by diabetes or varicose veins – can cause patients years of suffering.


From left to right: Dr. Helmke, Dr. Wandke (Cinogy GmbH), Prof. Viöl and Prof. Emmert (University Medical Center Göttingen) developed the PlasmaDerm solution that makes wounds heal faster.

Dirk Mahler/Fraunhofer

Working in collaboration with the company Cinogy and the Department of Dermatology, Venereology and Allergology at the University Medical Center Göttingen, the Fraunhofer Institute for Surface Engineering and Thin Films IST has successfully developed a new medical technology solution for treating wounds and skin disorders known as “PlasmaDerm”. Plasma promotes wound healing when it is generated directly on the skin.

“All you feel is a slight tingling sensation,” says Prof. Wolfgang Viöl from Fraunhofer IST, moving a device approximately the size and shape of a pocket flashlight in small circles over the back of his hand. Holding the device just over the skin, a faint purple mist can just barely be seen at the device’s tip. That’s plasma, he explains – an ionized gas.

PlasmaDerm – which was developed by a team consisting of medical professionals, biologists, physicists and engineers – is a novel solution. For the first time, the device generates a non-thermal or “cold” plasma directly on the skin at atmospheric pressure.

The patented method involves placing the electrode of the device close to the skin, with the skin itself acting as the second electrode. A high voltage is then applied across the gap, and the resulting electric fields convert the area between the electrode and the skin into non-thermal plasma.

PlasmaDerm is safe and painless

Since cold plasma has not been used on human beings before, the top priority of the Fraunhofer IST was to evaluate the safety of the solution. “We carried out a risk-benefit analysis to evaluate all the chemical and physical parameters and concluded that there is no reason to be concerned about using plasma on people,” says Dr. Andreas Helmke, describing how Fraunhofer IST went about the process.

A clinical study conducted by Prof. Steffen Emmert at the Department of Dermatology, Venereology and Allergology at the University Medical Center Göttingen revealed an antiseptic effect and improved wound healing. But Prof. Emmert explains that the greatest benefit of the application is the fact that “non-thermal plasma actually combines the mechanisms of different therapies.

UV, ozone and electrotherapy are already available, but plasma achieves a better effect in a shorter period of time.” Plasma reduces the bacteria count on the skin’s surface, while the electric field simultaneously boosts the skin’s microcirculation by allowing more oxygen to be delivered. These are both decisive factors in improving wound healing.

To enable the new method to be applied more flexibly, the researchers needed to develop a portable device. To do this, the Fraunhofer IST worked together with the company Cinogy. “We had to develop a device that was small but capable of generating high voltages.

The result is only about the size of a laptop and can be plugged into a normal socket between 100 and 230 V,” says Dr. Dirk Wandke, managing director of Cinogy, describing how they tackled the project’s biggest challenge. PlasmaDerm is now available all over Europe.

For Prof. Viöl, PlasmaDerm has inspired a vision. But the researcher has an even more ambitious vision. “I anticipate that in the future, a child who falls off a skateboard could be treated at home. Parents could care for the wound using a small PlasmaDerm stick instead of iodine. And I could even imagine the device itself being able to measure what’s wrong with somebody’s skin and then adjust the dose accordingly and start the physical treatment.”

Prof. Wolfgang Viöl, Dr. Andreas Helmke, Prof. Steffen Emmert and Dr. Dirk Wandke jointly accepted a Fraunhofer Prize in the Human-Centered Technology category for their development of PlasmaDerm.

Weitere Informationen:

http://www.fraunhofer.de/en/press/fraunhofer-awards-ceremony-2015/plasma-makes-w...

Dr. Simone Kondruweit-Reinema | Fraunhofer Research News

Further reports about: Allergology Plasma Surface Thin disorders electrode explains healing method skin wound healing wounds wounds heal

More articles from Health and Medicine:

nachricht Researchers release the brakes on the immune system
18.10.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht Norovirus evades immune system by hiding out in rare gut cells
12.10.2017 | University of Pennsylvania School of Medicine

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Osaka university researchers make the slipperiest surfaces adhesive

18.10.2017 | Materials Sciences

Space radiation won't stop NASA's human exploration

18.10.2017 | Physics and Astronomy

Los Alamos researchers and supercomputers help interpret the latest LIGO findings

18.10.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>