Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Pitt team finds molecular pathway that leads to inflammation in asthma

Researchers at the University of Pittsburgh School of Medicine have identified a molecular pathway that helps explain how an enzyme elevated in asthma patients can lead to increased mucus production and inflammation that is characteristic of the lung condition.

Their findings, reported online in this week's Proceedings of the National Academy of Sciences, reveal unique interactions between biological molecules that could be targeted to develop new asthma treatments.

An enzyme called epithelial 15-lipoxygenase 1 (15LO1) metabolizes fatty acids to produce an eicosanoid known as 15 hydroxyeicosaetetranoic acid (15 HETE) and is elevated in the cells that line the lungs of asthma patients, explained Sally E. Wenzel, M.D., professor of medicine, Pitt School of Medicine, and director of the Asthma Institute at UPMC and Pitt School of Medicine. Her team showed in 2009 that the enzyme plays a role in mucus production.

"In this project, we found out 15 HETE is conjugated to a common phospholipid," she said. "That complex, called 15HETE-PE, and 15LO1 behave as signaling molecules that appear to have a powerful influence on airway inflammation."

By examining lung cells obtained by bronchoscopy from 65 people with asthma, the researchers found that both 15LO1 and 15HETE-PE displace an inhibitory protein called PEBP1 from its bond with another protein called Raf-1, which when freed can lead to activation of extracellular signal-regulated kinase(ERK). Activated ERK is commonly observed in the epithelial, or lung lining, cells in asthma, but until now the reason for that was not understood.

"This is an important study as it directly explores the important role of 15-lipoxygenase 1 in the airway epithelial cells of patients with asthma, which immediately establishes the relevance to human disease," said Mark T. Gladwin, M.D., chief, Division of Pulmonary, Allergy and Critical Care Medicine, UPSOM.

Other experiments showed that knocking down 15LO1 decreased the dissociation of Raf-1 from PEBP1, which in turn reduced ERK activation. The pathway ultimately influences the production of factors involved in inflammation and mucus production.

"These results show us on both a molecular and mechanistic level and as mirrored by fresh cells from the patients themselves that the epithelial cells of people with asthma are very different from those that don't have it," Dr. Wenzel said. "It also gives us a potential treatment strategy: If we can prevent Raf-1 displacement, we might have a way of stopping the downstream consequences that lead to asthma."

Co-authors include Jinming Zhao, Ph.D., Silvana Balzar, M.D., Claudette M. St. Croix, Ph.D., and John B. Trudeau, B.S., of UPSOM and the Asthma Institute; and Valerie B. O'Donnell Ph.D., of Cardiff University, United Kingdom. The study was funded by the National Institutes of Health and the American Heart Association.

Anita Srikameswaran | EurekAlert!
Further information:

More articles from Health and Medicine:

nachricht Inflammation Triggers Unsustainable Immune Response to Chronic Viral Infection
24.10.2016 | Universität Basel

nachricht Resolving the mystery of preeclampsia
21.10.2016 | Universitätsklinikum Magdeburg

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Enormous dome in central Andes driven by huge magma body beneath it

25.10.2016 | Earth Sciences

First time-lapse footage of cell activity during limb regeneration

25.10.2016 | Life Sciences

Deep down fracking wells, microbial communities thrive

25.10.2016 | Earth Sciences

More VideoLinks >>>