Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Pitt team finds molecular pathway that leads to inflammation in asthma

09.08.2011
Researchers at the University of Pittsburgh School of Medicine have identified a molecular pathway that helps explain how an enzyme elevated in asthma patients can lead to increased mucus production and inflammation that is characteristic of the lung condition.

Their findings, reported online in this week's Proceedings of the National Academy of Sciences, reveal unique interactions between biological molecules that could be targeted to develop new asthma treatments.

An enzyme called epithelial 15-lipoxygenase 1 (15LO1) metabolizes fatty acids to produce an eicosanoid known as 15 hydroxyeicosaetetranoic acid (15 HETE) and is elevated in the cells that line the lungs of asthma patients, explained Sally E. Wenzel, M.D., professor of medicine, Pitt School of Medicine, and director of the Asthma Institute at UPMC and Pitt School of Medicine. Her team showed in 2009 that the enzyme plays a role in mucus production.

"In this project, we found out 15 HETE is conjugated to a common phospholipid," she said. "That complex, called 15HETE-PE, and 15LO1 behave as signaling molecules that appear to have a powerful influence on airway inflammation."

By examining lung cells obtained by bronchoscopy from 65 people with asthma, the researchers found that both 15LO1 and 15HETE-PE displace an inhibitory protein called PEBP1 from its bond with another protein called Raf-1, which when freed can lead to activation of extracellular signal-regulated kinase(ERK). Activated ERK is commonly observed in the epithelial, or lung lining, cells in asthma, but until now the reason for that was not understood.

"This is an important study as it directly explores the important role of 15-lipoxygenase 1 in the airway epithelial cells of patients with asthma, which immediately establishes the relevance to human disease," said Mark T. Gladwin, M.D., chief, Division of Pulmonary, Allergy and Critical Care Medicine, UPSOM.

Other experiments showed that knocking down 15LO1 decreased the dissociation of Raf-1 from PEBP1, which in turn reduced ERK activation. The pathway ultimately influences the production of factors involved in inflammation and mucus production.

"These results show us on both a molecular and mechanistic level and as mirrored by fresh cells from the patients themselves that the epithelial cells of people with asthma are very different from those that don't have it," Dr. Wenzel said. "It also gives us a potential treatment strategy: If we can prevent Raf-1 displacement, we might have a way of stopping the downstream consequences that lead to asthma."

Co-authors include Jinming Zhao, Ph.D., Silvana Balzar, M.D., Claudette M. St. Croix, Ph.D., and John B. Trudeau, B.S., of UPSOM and the Asthma Institute; and Valerie B. O'Donnell Ph.D., of Cardiff University, United Kingdom. The study was funded by the National Institutes of Health and the American Heart Association.

Anita Srikameswaran | EurekAlert!
Further information:
http://www.upmc.edu

More articles from Health and Medicine:

nachricht One gene closer to regenerative therapy for muscular disorders
01.06.2017 | Cincinnati Children's Hospital Medical Center

nachricht The gut microbiota plays a key role in treatment with classic diabetes medication
01.06.2017 | University of Gothenburg

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>