Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Pitt researchers discover big role for microRNA in lethal lung fibrosis

A small piece of RNA appears to play a big role in the development of idiopathic pulmonary fibrosis (IPF), according to lung disease researchers at the University of Pittsburgh School of Medicine. Their study, which is the first to examine microRNAs in the disease, is available online in the American Journal of Respiratory and Critical Care Medicine.

MicroRNAs are short strands of genetic material that are involved in regulating the expression, or activity, of genes, explained senior author Naftali Kaminski, M.D., associate professor of medicine, computational biology and pathology, and director of the Dorothy P. and Richard P. Simmons Center for Interstitial Lung Diseases at the University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center. They are a new family of RNA molecules that are thought to be factors in embryonic development, multiple cancers and chronic heart failure.

"Our research now indicates that microRNA changes also contribute to IPF," Dr. Kaminski said. "We have identified an entirely new molecular mechanism for the disease, which gives us new ideas about how to treat it."

The researchers assessed microRNA profiles in samples of healthy lung tissue and samples of tissue affected by IPF, which is a chronic, progressive and usually lethal disease of lung scarring that affects more than 100,000 Americans and leads to 15,000 deaths annually.

... more about:
»IPF »Pitt vaccine »RNA »RNA molecule »health services

"Ten percent of the microRNAs were different between IPF and control lungs," said Kusum Pandit, Ph.D., the study's lead author and a postdoctoral researcher in Dr. Kaminski's lab. "The changes were very impressive."

The researchers particularly noted a diminished amount of a microRNA called let-7d and examined it more closely. They found almost no expression of let-7d in the fibrotic, or scarred, areas of 40 IPF lung samples, whereas it was abundant in 20 healthy samples used for comparison. Further experimentation showed them that let-7d is inhibited by the cytokine TGF-beta, a signaling protein that promotes the development of fibrosis through several biological pathways.

In another experiment, the researchers made an antagonist that inhibits let-7d and administered it to several mice through their windpipes for a few days. When examined soon after, the lungs of the mice looked very much like what is seen in patients with early lung fibrosis.

"These results suggest that by increasing let-7d in the lung, we may be able to slow down or even prevent lung fibrosis," Dr. Kaminski said. "Our next challenge is to develop methods that will allow us to safely do that so we can test its therapeutic value."

Co-authors include several other researchers from the Simmons Center, the University of Pittsburgh School of Medicine and the Graduate School of Public Health; Democritus University of Thrace and University Hospital of Alexandroupolis, Greece; Instituto Nacional de Enfermedades Respiratorias, Mexico; Universidad Nacional Autonoma de Mexico, Mexico; and Comprehensive Pneumonology Center, Germany.

The study was funded by grants from the National Institutes of Health, the Dorothy P. and Richard P. Simmons Endowed Chair for Pulmonary Research and Universidad Nacional Autonoma de Mexico.

About the the University of Pittsburgh School of Medicine

As one of the nation's leading academic centers for biomedical research, the University of Pittsburgh School of Medicine integrates advanced technology with basic science across a broad range of disciplines in a continuous quest to harness the power of new knowledge and improve the human condition. Driven mainly by the School of Medicine and its affiliates, Pitt has ranked among the top 10 recipients of funding from the National Institutes of Health since 1997 and now ranks fifth in the nation, according to preliminary data for fiscal year 2008. Likewise, the School of Medicine is equally committed to advancing the quality and strength of its medical and graduate education programs, for which it is recognized as an innovative leader, and to training highly skilled, compassionate clinicians and creative scientists well-equipped to engage in world-class research. The School of Medicine is the academic partner of UPMC, which has collaborated with the University to raise the standard of medical excellence in Pittsburgh and to position health care as a driving force behind the region's economy. For more information about the School of Medicine, see

Anita Srikameswaran | EurekAlert!
Further information:

Further reports about: IPF Pitt vaccine RNA RNA molecule health services

More articles from Health and Medicine:

nachricht Advanced analysis of brain structure shape may track progression to Alzheimer's disease
26.10.2016 | Massachusetts General Hospital

nachricht Indian roadside refuse fires produce toxic rainbow
26.10.2016 | Duke University

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

How nanoscience will improve our health and lives in the coming years

27.10.2016 | Materials Sciences

OU-led team discovers rare, newborn tri-star system using ALMA

27.10.2016 | Physics and Astronomy

'Neighbor maps' reveal the genome's 3-D shape

27.10.2016 | Life Sciences

More VideoLinks >>>