Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Pitt researchers discover big role for microRNA in lethal lung fibrosis

29.04.2010
A small piece of RNA appears to play a big role in the development of idiopathic pulmonary fibrosis (IPF), according to lung disease researchers at the University of Pittsburgh School of Medicine. Their study, which is the first to examine microRNAs in the disease, is available online in the American Journal of Respiratory and Critical Care Medicine.

MicroRNAs are short strands of genetic material that are involved in regulating the expression, or activity, of genes, explained senior author Naftali Kaminski, M.D., associate professor of medicine, computational biology and pathology, and director of the Dorothy P. and Richard P. Simmons Center for Interstitial Lung Diseases at the University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center. They are a new family of RNA molecules that are thought to be factors in embryonic development, multiple cancers and chronic heart failure.

"Our research now indicates that microRNA changes also contribute to IPF," Dr. Kaminski said. "We have identified an entirely new molecular mechanism for the disease, which gives us new ideas about how to treat it."

The researchers assessed microRNA profiles in samples of healthy lung tissue and samples of tissue affected by IPF, which is a chronic, progressive and usually lethal disease of lung scarring that affects more than 100,000 Americans and leads to 15,000 deaths annually.

... more about:
»IPF »Pitt vaccine »RNA »RNA molecule »health services

"Ten percent of the microRNAs were different between IPF and control lungs," said Kusum Pandit, Ph.D., the study's lead author and a postdoctoral researcher in Dr. Kaminski's lab. "The changes were very impressive."

The researchers particularly noted a diminished amount of a microRNA called let-7d and examined it more closely. They found almost no expression of let-7d in the fibrotic, or scarred, areas of 40 IPF lung samples, whereas it was abundant in 20 healthy samples used for comparison. Further experimentation showed them that let-7d is inhibited by the cytokine TGF-beta, a signaling protein that promotes the development of fibrosis through several biological pathways.

In another experiment, the researchers made an antagonist that inhibits let-7d and administered it to several mice through their windpipes for a few days. When examined soon after, the lungs of the mice looked very much like what is seen in patients with early lung fibrosis.

"These results suggest that by increasing let-7d in the lung, we may be able to slow down or even prevent lung fibrosis," Dr. Kaminski said. "Our next challenge is to develop methods that will allow us to safely do that so we can test its therapeutic value."

Co-authors include several other researchers from the Simmons Center, the University of Pittsburgh School of Medicine and the Graduate School of Public Health; Democritus University of Thrace and University Hospital of Alexandroupolis, Greece; Instituto Nacional de Enfermedades Respiratorias, Mexico; Universidad Nacional Autonoma de Mexico, Mexico; and Comprehensive Pneumonology Center, Germany.

The study was funded by grants from the National Institutes of Health, the Dorothy P. and Richard P. Simmons Endowed Chair for Pulmonary Research and Universidad Nacional Autonoma de Mexico.

About the the University of Pittsburgh School of Medicine

As one of the nation's leading academic centers for biomedical research, the University of Pittsburgh School of Medicine integrates advanced technology with basic science across a broad range of disciplines in a continuous quest to harness the power of new knowledge and improve the human condition. Driven mainly by the School of Medicine and its affiliates, Pitt has ranked among the top 10 recipients of funding from the National Institutes of Health since 1997 and now ranks fifth in the nation, according to preliminary data for fiscal year 2008. Likewise, the School of Medicine is equally committed to advancing the quality and strength of its medical and graduate education programs, for which it is recognized as an innovative leader, and to training highly skilled, compassionate clinicians and creative scientists well-equipped to engage in world-class research. The School of Medicine is the academic partner of UPMC, which has collaborated with the University to raise the standard of medical excellence in Pittsburgh and to position health care as a driving force behind the region's economy. For more information about the School of Medicine, see www.medschool.pitt.edu.

Anita Srikameswaran | EurekAlert!
Further information:
http://www.upmc.edu

Further reports about: IPF Pitt vaccine RNA RNA molecule health services

More articles from Health and Medicine:

nachricht Team discovers how bacteria exploit a chink in the body's armor
20.01.2017 | University of Illinois at Urbana-Champaign

nachricht Rabies viruses reveal wiring in transparent brains
19.01.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>