Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Pistachio consumption may promote a beneficial gut environment

25.04.2012
First-of-its-kind research presented as an abstract at the 2012 American Society for Nutrition suggests eating pistachios may positively impact bacterial profile of the digestive tract

A preliminary 16-person study suggests that eating pistachios may help alter levels of potentially beneficial bacteria in the gut, a finding that holds promise for supporting digestive health(1). The research, presented as an abstract this week at the Experimental Biology conference, is the first study of pistachios and almonds and their modulating role on the gut microbiota composition.

"Gut microbiota, or the microbial environment in the gastrointestinal tract, provides important functions to the human host," said Volker Mai, PhD, lead study author and assistant professor at the University of Florida's Institute of Food and Agricultural Sciences. "Modifying microbiota towards a 'beneficial' composition is a promising approach for supporting intestinal health, with potential effects on overall health, and it appears that pistachios may play a role in this modification."

Pistachios Deliver Essential Compounds to the Gut

Pistachios appear to have prebiotic characteristics; they contain non-digestible food components such as dietary fiber, which remain in the gut and serve as food for naturally occurring bacteria. They also contain phytochemicals that have the potential to modify microbiota composition. Foods with prebiotic properties may enhance the growth of beneficial bacteria in the digestive tract.

To examine this relationship between prebiotics found in pistachios and the gut, researchers conducted a feeding study at the Beltsville Human Nutrition Research Center in Maryland. Sixteen healthy individuals were randomly assigned to eat an American-style, pre-planned diet that included either 0 ounces, 1.5 ounces or 3 ounces of pistachios or almonds per day. Each participant's diet was calorie-controlled to ensure they neither gained nor lost weight during the intervention. Multiple stool samples were collected throughout the study and analyzed for bacterial community composition. The researchers also quantified the amounts of Lactic Acid Bacteria and Bifidobacteria in the stool, two groups of live microorganisms that reside in the digestive tract and help break down food substances.

After controlling for age, dietary factors and other relevant variables, the researchers observed that after 19 days, people who ate up to 3 ounces of pistachios (about 147 nuts or 2 servings) per day had increased changes in levels of various gut bacteria. According to the abstract, people who ate pistachios showed an increase in potentially beneficial butyrate-producing bacteria. Butyrate has been shown to be a preferred energy source for colonic epithelial cells and is thought to play an important role in maintaining colonic health in humans(2). The difference in gut microbes was stronger in people who ate pistachios rather than almonds. The researchers used "modern high throughput sequencing" to quantify specific gut bacterial DNA signatures before and after nut consumption. According to the researchers, this is the first study using this method to observe that pistachios and almonds may have the ability to help change the amounts of bacteria thriving in the gut.

"Fibers and incompletely digested foods, including nuts, that reach the proximal colon provide compounds required for maintaining a diverse microbiota," said Mai. "While still in the early stages of research, this study is a promising sign that increasing consumption of nuts, specifically pistachios, provides a novel means to modify the number of the gut's 'healthy' microbiota, with potential health benefits."

The research was funded by the Paramount Farms International and the Almond Board of California.

In-Shell Pistachios Offer a Package of Nutrients

A one-ounce serving of pistachios, with 49 kernels and 160 calories, provides 3 grams of dietary fiber, which is 12 percent of the recommended daily value, more than is found in a serving of wheat bread. Pistachios are also an excellent source of vitamin B6, copper and manganese and a good source of phosphorus and thiamin.

(1)Ukhanova M, Fredborg M, Daniels S, Netter F, Novotny JA, Gebauer SK, Xiaoyu W, Baer D, Mai V. Human gut microbiota changes after consumption of almonds or pistachios. Presented at 2012 Experimental Biology meeting in San Diego, CA on 4/23/2012.

(2)Appl Environ Microbiol. 2000 Apr;66(4):1654-61.

About PistachioHealth.com

PistachioHealth.com, the leading online source of information on the health and nutrition benefits of pistachios reaches more than 20,000 visitors each month. The site is offered in 12 languages and includes research updates and educational materials, to both consumers and health professionals. Like PistachioHealth.com on Facebook and follow @pistachiohealth on Twitter. For more information about the health benefits of pistachios, visit www.PistachioHealth.com.

Kim Bedwell | EurekAlert!
Further information:
http://www.fleishman.com
http://www.PistachioHealth.com

More articles from Health and Medicine:

nachricht Investigators may unlock mystery of how staph cells dodge the body's immune system
22.09.2017 | Cedars-Sinai Medical Center

nachricht Monitoring the heart's mitochondria to predict cardiac arrest?
21.09.2017 | Boston Children's Hospital

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>