Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Pistachio consumption may promote a beneficial gut environment

25.04.2012
First-of-its-kind research presented as an abstract at the 2012 American Society for Nutrition suggests eating pistachios may positively impact bacterial profile of the digestive tract

A preliminary 16-person study suggests that eating pistachios may help alter levels of potentially beneficial bacteria in the gut, a finding that holds promise for supporting digestive health(1). The research, presented as an abstract this week at the Experimental Biology conference, is the first study of pistachios and almonds and their modulating role on the gut microbiota composition.

"Gut microbiota, or the microbial environment in the gastrointestinal tract, provides important functions to the human host," said Volker Mai, PhD, lead study author and assistant professor at the University of Florida's Institute of Food and Agricultural Sciences. "Modifying microbiota towards a 'beneficial' composition is a promising approach for supporting intestinal health, with potential effects on overall health, and it appears that pistachios may play a role in this modification."

Pistachios Deliver Essential Compounds to the Gut

Pistachios appear to have prebiotic characteristics; they contain non-digestible food components such as dietary fiber, which remain in the gut and serve as food for naturally occurring bacteria. They also contain phytochemicals that have the potential to modify microbiota composition. Foods with prebiotic properties may enhance the growth of beneficial bacteria in the digestive tract.

To examine this relationship between prebiotics found in pistachios and the gut, researchers conducted a feeding study at the Beltsville Human Nutrition Research Center in Maryland. Sixteen healthy individuals were randomly assigned to eat an American-style, pre-planned diet that included either 0 ounces, 1.5 ounces or 3 ounces of pistachios or almonds per day. Each participant's diet was calorie-controlled to ensure they neither gained nor lost weight during the intervention. Multiple stool samples were collected throughout the study and analyzed for bacterial community composition. The researchers also quantified the amounts of Lactic Acid Bacteria and Bifidobacteria in the stool, two groups of live microorganisms that reside in the digestive tract and help break down food substances.

After controlling for age, dietary factors and other relevant variables, the researchers observed that after 19 days, people who ate up to 3 ounces of pistachios (about 147 nuts or 2 servings) per day had increased changes in levels of various gut bacteria. According to the abstract, people who ate pistachios showed an increase in potentially beneficial butyrate-producing bacteria. Butyrate has been shown to be a preferred energy source for colonic epithelial cells and is thought to play an important role in maintaining colonic health in humans(2). The difference in gut microbes was stronger in people who ate pistachios rather than almonds. The researchers used "modern high throughput sequencing" to quantify specific gut bacterial DNA signatures before and after nut consumption. According to the researchers, this is the first study using this method to observe that pistachios and almonds may have the ability to help change the amounts of bacteria thriving in the gut.

"Fibers and incompletely digested foods, including nuts, that reach the proximal colon provide compounds required for maintaining a diverse microbiota," said Mai. "While still in the early stages of research, this study is a promising sign that increasing consumption of nuts, specifically pistachios, provides a novel means to modify the number of the gut's 'healthy' microbiota, with potential health benefits."

The research was funded by the Paramount Farms International and the Almond Board of California.

In-Shell Pistachios Offer a Package of Nutrients

A one-ounce serving of pistachios, with 49 kernels and 160 calories, provides 3 grams of dietary fiber, which is 12 percent of the recommended daily value, more than is found in a serving of wheat bread. Pistachios are also an excellent source of vitamin B6, copper and manganese and a good source of phosphorus and thiamin.

(1)Ukhanova M, Fredborg M, Daniels S, Netter F, Novotny JA, Gebauer SK, Xiaoyu W, Baer D, Mai V. Human gut microbiota changes after consumption of almonds or pistachios. Presented at 2012 Experimental Biology meeting in San Diego, CA on 4/23/2012.

(2)Appl Environ Microbiol. 2000 Apr;66(4):1654-61.

About PistachioHealth.com

PistachioHealth.com, the leading online source of information on the health and nutrition benefits of pistachios reaches more than 20,000 visitors each month. The site is offered in 12 languages and includes research updates and educational materials, to both consumers and health professionals. Like PistachioHealth.com on Facebook and follow @pistachiohealth on Twitter. For more information about the health benefits of pistachios, visit www.PistachioHealth.com.

Kim Bedwell | EurekAlert!
Further information:
http://www.fleishman.com
http://www.PistachioHealth.com

More articles from Health and Medicine:

nachricht Laser activated gold pyramids could deliver drugs, DNA into cells without harm
24.03.2017 | Harvard John A. Paulson School of Engineering and Applied Sciences

nachricht What does congenital Zika syndrome look like?
24.03.2017 | University of California - San Diego

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>