Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Pistachio consumption may promote a beneficial gut environment

25.04.2012
First-of-its-kind research presented as an abstract at the 2012 American Society for Nutrition suggests eating pistachios may positively impact bacterial profile of the digestive tract

A preliminary 16-person study suggests that eating pistachios may help alter levels of potentially beneficial bacteria in the gut, a finding that holds promise for supporting digestive health(1). The research, presented as an abstract this week at the Experimental Biology conference, is the first study of pistachios and almonds and their modulating role on the gut microbiota composition.

"Gut microbiota, or the microbial environment in the gastrointestinal tract, provides important functions to the human host," said Volker Mai, PhD, lead study author and assistant professor at the University of Florida's Institute of Food and Agricultural Sciences. "Modifying microbiota towards a 'beneficial' composition is a promising approach for supporting intestinal health, with potential effects on overall health, and it appears that pistachios may play a role in this modification."

Pistachios Deliver Essential Compounds to the Gut

Pistachios appear to have prebiotic characteristics; they contain non-digestible food components such as dietary fiber, which remain in the gut and serve as food for naturally occurring bacteria. They also contain phytochemicals that have the potential to modify microbiota composition. Foods with prebiotic properties may enhance the growth of beneficial bacteria in the digestive tract.

To examine this relationship between prebiotics found in pistachios and the gut, researchers conducted a feeding study at the Beltsville Human Nutrition Research Center in Maryland. Sixteen healthy individuals were randomly assigned to eat an American-style, pre-planned diet that included either 0 ounces, 1.5 ounces or 3 ounces of pistachios or almonds per day. Each participant's diet was calorie-controlled to ensure they neither gained nor lost weight during the intervention. Multiple stool samples were collected throughout the study and analyzed for bacterial community composition. The researchers also quantified the amounts of Lactic Acid Bacteria and Bifidobacteria in the stool, two groups of live microorganisms that reside in the digestive tract and help break down food substances.

After controlling for age, dietary factors and other relevant variables, the researchers observed that after 19 days, people who ate up to 3 ounces of pistachios (about 147 nuts or 2 servings) per day had increased changes in levels of various gut bacteria. According to the abstract, people who ate pistachios showed an increase in potentially beneficial butyrate-producing bacteria. Butyrate has been shown to be a preferred energy source for colonic epithelial cells and is thought to play an important role in maintaining colonic health in humans(2). The difference in gut microbes was stronger in people who ate pistachios rather than almonds. The researchers used "modern high throughput sequencing" to quantify specific gut bacterial DNA signatures before and after nut consumption. According to the researchers, this is the first study using this method to observe that pistachios and almonds may have the ability to help change the amounts of bacteria thriving in the gut.

"Fibers and incompletely digested foods, including nuts, that reach the proximal colon provide compounds required for maintaining a diverse microbiota," said Mai. "While still in the early stages of research, this study is a promising sign that increasing consumption of nuts, specifically pistachios, provides a novel means to modify the number of the gut's 'healthy' microbiota, with potential health benefits."

The research was funded by the Paramount Farms International and the Almond Board of California.

In-Shell Pistachios Offer a Package of Nutrients

A one-ounce serving of pistachios, with 49 kernels and 160 calories, provides 3 grams of dietary fiber, which is 12 percent of the recommended daily value, more than is found in a serving of wheat bread. Pistachios are also an excellent source of vitamin B6, copper and manganese and a good source of phosphorus and thiamin.

(1)Ukhanova M, Fredborg M, Daniels S, Netter F, Novotny JA, Gebauer SK, Xiaoyu W, Baer D, Mai V. Human gut microbiota changes after consumption of almonds or pistachios. Presented at 2012 Experimental Biology meeting in San Diego, CA on 4/23/2012.

(2)Appl Environ Microbiol. 2000 Apr;66(4):1654-61.

About PistachioHealth.com

PistachioHealth.com, the leading online source of information on the health and nutrition benefits of pistachios reaches more than 20,000 visitors each month. The site is offered in 12 languages and includes research updates and educational materials, to both consumers and health professionals. Like PistachioHealth.com on Facebook and follow @pistachiohealth on Twitter. For more information about the health benefits of pistachios, visit www.PistachioHealth.com.

Kim Bedwell | EurekAlert!
Further information:
http://www.fleishman.com
http://www.PistachioHealth.com

More articles from Health and Medicine:

nachricht Penn vet research identifies new target for taming Ebola
12.01.2017 | University of Pennsylvania

nachricht The strange double life of Dab2
10.01.2017 | University of Miami Miller School of Medicine

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Water - as the underlying driver of the Earth’s carbon cycle

17.01.2017 | Earth Sciences

Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

17.01.2017 | Materials Sciences

Smart homes will “LISTEN” to your voice

17.01.2017 | Architecture and Construction

VideoLinks
B2B-VideoLinks
More VideoLinks >>>