Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New pig model may lead to progress in treating debilitating eye disease

09.03.2012
A newly developed, genetically modified pig may hold the keys to the development of improved treatments and possibly even a cure for retinitis pigmentosa (RP), the most common inherited retinal disease in the United States.

The pig model was developed by researchers in the University of Louisville Department of Ophthalmology & Visual Sciences and at the National Swine Resource and Research Center at the University of Missouri.

"We have previously relied mostly on rodent models to study the development and progression of this disease, and although very important insights have been obtained, rodent eyes are much smaller than human eyes and they lack some important retinal structures, so the development of a large animal model of RP is an important step forward in the research of this blinding disease," said Henry J. Kaplan, MD, Evans Professor and chair of the Department of Ophthalmology & Visual Sciences at the University of Louisville, and senior investigator on this study. "This new tool, developed in the miniature swine, should allow important progress in the development of novel treatments for this disease."

The researchers used miniature pigs, which weigh about 150 pounds at maturity, because they are much more manageable than the larger, domestic pig.

The results of the study were published in the January 2012 issue of the journal Investigative Ophthalmology & Visual Science (http://www.iovs.org/content/53/1/501.full?rss=1). The research was funded by The National Institutes of Health and the National Eye Institute, Research to Prevent Blindness, Discovery Eye Foundation, the National Institute of Food and Agriculture, the Edward N. and Della L. Thorne Memorial Foundation, the Kentucky Research Challenge Trust Fund, the Kentucky Science and Engineering Foundation, the Moran Eye Center Tiger Team Translational Medicine Award and the University of Louisville Clinical and Translational Science Grant Program.

"Pigs have become an important tool in helping researchers understand many human diseases," said Randall S. Prather, PhD, distinguished professor of reproductive biotechnology in the University of Missouri College of Agriculture, Food and Natural Resources, and investigator on the study. "Additionally, the miniature swine are much easier to handle than their larger kin and don't present researchers with as many challenges. It's important that we look for these new avenues for research as we continue our search for cures to some of the world's most prevalent diseases."

Researchers used an abnormal gene, RHO P23H, the most common cause of autosomal dominant RP, in which affected individuals have a 50/50 chance of passing the disease on to their children. They inserted the mutant gene into the nucleus of miniature pig embryos, which were then transferred into surrogate mothers for gestation. The offspring expressed the mutant gene that causes RP and their eyes showed classic features of the eye disease. This animal model will now be used to screen the efficacy of various novel therapies for this disease, including stem cell transplantation, drug therapy, gene therapy and the retinal prosthesis.

"We now have a model of RP that mimics human disease in a large animal," Kaplan said. "These pigs will be on the front line of the development of new therapies for this devastating disease."

Retinitis pigmentosa affects about 1 in 4000 Americans and can cause retinal degeneration, which leads to night blindness, loss of peripheral vision, and ultimately total vision loss.

Other investigators involved in this study include Maureen A. McCall, Juan P. Fernandez de Castro, Wei Wang, Jennifer M. Noel and Paul J. DeMarco of the University of Louisville; Patricia Bray-Ward and Cecilia Rios of the University of Nevada; Jason W. Ross of Iowa State University; Bryan W. Jones and Robert E. Marc of the University of Utah; and Jianguo Zhao, Melissa Samuel, Liang Zhou and Eric Walters of the University of Missouri.

Lauren Williams | EurekAlert!
Further information:
http://www.louisville.edu

More articles from Health and Medicine:

nachricht Millions through license revenues
27.04.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht New High-Performance Center Translational Medical Engineering
26.04.2017 | Fraunhofer ITEM

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>