Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Physician-scientist proves stem cells heal lungs of newborn animals

30.11.2009
Study anticipated to benefit premature babies

Dr. Bernard Thébaud lives in two very different worlds. As a specialist in the Stollery Children's Hospital's Neonatal Intensive Care Unit at the Royal Alexandra Hospital, he cares for tiny babies, many of whom struggle for breath after being born weeks before they are due.

Across town, in his laboratory in the Faculty of Medicine & Dentistry at the University of Alberta, Dr. Thébaud dons a lab coat and peers into a microscope to examine the precise effect of stem cells on the lungs.

Today, with his scientific research being published in the American Journal of Respiratory and Critical Care Medicine, Dr. Thébaud has made a significant leap to bridge the gap between those two worlds.

An international team of scientists led by Dr. Thébaud has demonstrated for the first time that stem cells protect and repair the lungs of newborn rats. "The really exciting thing that we discovered was that stem cells are like little factories, pumping out healing factors," says Dr. Thébaud, an Alberta Heritage Foundation for Medical Research Clinical Scholar. "That healing liquid seems to boost the power of the healthy lung cells and helps them to repair the lungs."

In this study, Thébaud's team simulated the conditions of prematurity – giving the newborn rats oxygen. The scientists then took stem cells, derived from bone marrow, and injected them into the rats' airways. Two weeks later, the rats treated with stem cells were able to run twice as far, and had better survival rates. When Thébaud's team looked at the lungs, they found the stem cells had repaired the lungs, and prevented further damage.

"I want to congratulate Dr. Thébaud and his team. This research offers real hope for a new treatment for babies with chronic lung disease," says Dr. Roberta Ballard, professor of pediatrics, University of California, San Francisco. "In a few short years, I anticipate we will be able to take these findings and begin clinical trials with premature babies."

"The dilemma we face with these tiny babies is a serious one. When they are born too early, they simply cannot breathe on their own. To save the babies' lives, we put them on a ventilator and give them oxygen, leaving many of them with chronic lung disease," says Dr. Thébaud. "Before the next decade is out I want to put a stop to this devastating disease."

The research team includes physicians and scientists from Edmonton, Alberta, Tours, France, Chicago, Illinois, and Montreal, Quebec.

The team is now investigating the long-term safety of using stem cells as a lung therapy. The scientists are examining rats at 3 months, and 6 months after treatment, studying the lungs, and checking their organs to rule out any risk of cancer. Dr. Thébaud's team is also exploring whether human cord blood is a better option than bone marrow stem cells in treating lung disease.

"We are also studying closely the healing liquid produced by the stem cells," says Dr. Thébaud. "If that liquid can be used on its own to grow and repair the lungs, that might make the injection of stem cells unnecessary."

Dr. Thébaud is a neonatal specialist for Alberta Health Services, and a Canada Research Chair in Translational Lung and Vascular Development Biology. His research is supported by the AHFMR, the Canada Foundation for Innovation, the Canadian Institutes of Health Research, the Canadian Stem Cell Network and the Stollery Children's Hospital Foundation.

The study, Airway Delivery of Mesenchymal Stem Cells prevents Arrested Alveolar Growth In Neonatal Lung Injury In Rats, is available at http://ajrccm.atsjournals.org/current.shtml

Still photos and video content (including a premature baby and her parents) are available for download at www.ahfmr.ab.ca

Media please contact Karen Thomas, AHFMR Media Specialist, 1.877.423.5727 x 225, 1.403.651.1112 (cell), Karen.thomas@ahfmr.ab.ca

For more information on this research contact Dr. Bernard Thébaud at bthebaud@ualberta.ca

Background:

Alberta has the highest rate of premature births in Canada with a rate of 9.2% compared to the rest of Canada at 7.8%.

Babies who are born extremely premature – before 28 weeks – cannot breathe on their own. In order to help the babies' lungs to develop, neonatal doctors give them oxygen and drugs to help them breathe.

These treatments contribute to a chronic lung disease known as Bronchopulmonary dysplasia (BPD). At present there is no treatment to heal the lungs of these premature babies.

50% of babies born before 28 weeks will get chronic lung disease. Case studies have shown that as these babies grow up, they continue to struggle with lung disease, coping with reduced lung function and early aging of their lungs.

Karen Thomas | EurekAlert!
Further information:
http://www.ahfmr.ab.ca

More articles from Health and Medicine:

nachricht A promising target for kidney fibrosis
21.04.2017 | Brigham and Women's Hospital

nachricht Stem cell transplants: activating signal paths may protect from graft-versus-host disease
20.04.2017 | Technische Universität München

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

DGIST develops 20 times faster biosensor

24.04.2017 | Physics and Astronomy

Nanoimprinted hyperlens array: Paving the way for practical super-resolution imaging

24.04.2017 | Materials Sciences

Atomic-level motion may drive bacteria's ability to evade immune system defenses

24.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>