Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Phobia's effect on perception of feared object allows fear to persist

23.02.2012
The more afraid a person is of a spider, the bigger that individual perceives the spider to be, new research suggests.

In the context of a fear of spiders, this warped perception doesn't necessarily interfere with daily living. But for individuals who are afraid of needles, for example, the conviction that needles are larger than they really are could lead people who fear injections to avoid getting the health care they need.

A better understanding of how a phobia affects the perception of feared objects can help clinicians design more effective treatments for people who seek to overcome their fears, according to the researchers.

In this study, participants who feared spiders were asked to undergo five encounters with live spiders – tarantulas, in fact – and then provide size estimates of the spiders after those encounters ended. The more afraid the participants said they were of the spiders, the larger they estimated the spiders had been.

"If one is afraid of spiders, and by virtue of being afraid of spiders one tends to perceive spiders as bigger than they really are, that may feed the fear, foster that fear, and make it difficult to overcome," said Michael Vasey, professor of psychology at Ohio State University and lead author of the study.

"When it comes to phobias, it's all about avoidance as a primary means of keeping oneself safe. As long as you avoid, you can't discover that you're wrong. And you're stuck. So to the extent that perceiving spiders as bigger than they really are fosters fear and avoidance, it then potentially is part of this cycle that feeds the phobia that leads to its persistence.

"We're trying to understand why phobias persist so we can better target treatments to change those reasons they persist."

The study is published in a recent issue of the Journal of Anxiety Disorders.

The researchers recruited 57 people who self-identified as having a spider phobia. Each participant then interacted at specific time points over a period of eight weeks with five different varieties of tarantulas varying in size from about 1 to 6 inches long.

The spiders were contained in an uncovered glass tank. Participants began their encounters 12 feet from the tank and were asked to approach the spider. Once they were standing next to the tank, they were asked to guide the spider around the tank by touching it with an 8-inch probe, and later with a shorter probe.

Throughout these encounters, researchers asked participants to report how afraid they were feeling on a scale of 0-100 according to an index of subjective units of distress. After the encounters, participants completed additional self-report measures of their specific fear of spiders, any panic symptoms they experienced during the encounters with the spiders, and thoughts about fear reduction and future spider encounters.

Finally, the research participants estimated the size of the spiders – while no longer being able to see them – by drawing a single line on an index card indicating the length of the spider from the tips of its front legs to the tips of its back legs.

An analysis of the results showed that higher average peak ratings of distress during the spider encounters were associated with estimates that the spiders were larger than they really were. Similar positive associations were seen between over-estimates of spider size and participants' higher average peak levels of anxiety, higher average numbers of panic symptoms and overall spider fear. These findings have been supported in later studies with broader samples of people with varying levels of fear of spiders.

"It would appear from that result that fear is driving or altering the perception of the feared object, in this case a spider," said Vasey, also the director of research for the psychology department's Anxiety and Stress Disorders Clinic. "We already knew fear and anxiety alter thoughts about the feared thing. For example, the feared outcome is interpreted as being more likely than it really is. But this study shows that even perception is altered by fear. In this case, the feared spider is seen as being bigger. And that may serve as a maintaining factor for the fear."

The approach tasks with the spiders are a classic example of exposure therapy, a common treatment for people with phobias. Though this therapy is known to be effective, scientists still do not fully understand why it works. And for some, the effects don't last – but it is difficult to predict who will have a relapse of fear, Vasey said.

He and colleagues are studying these biased perceptions as well as attitudes with hopes that the new knowledge will enhance treatment for people with various phobias. The work suggests that fear not only alters one's perception of the feared thing, but also can influence a person's automatic attitude toward an object. Those who have developed an automatic negative attitude toward a feared object might have a harder time overcoming their fear.

Though individuals with arachnophobia are unlikely to seek treatment, the use of spiders in this research was a convenient way to study the complex effects of fear on visual perception and how those effects might cause fear to persist, Vasey noted.

"Ultimately, we are interested in identifying predictors of relapse so we can better measure when a person is done with treatment," he said.

This work is supported by the National Institute of Mental Health.

Co-authors include Michael Vilensky, Jacqueline Heath, Casaundra Harbaugh, Adam Buffington and Vasey's principal collaborator, Russell Fazio, all of Ohio State's Department of Psychology.

Michael Vasey | EurekAlert!
Further information:
http://www.osu.edu

More articles from Health and Medicine:

nachricht Organ-on-a-chip mimics heart's biomechanical properties
23.02.2017 | Vanderbilt University

nachricht Researchers identify cause of hereditary skeletal muscle disorder
22.02.2017 | Klinikum der Universität München

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>