Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Better Than Phelps: Hot, Golden, Swimming Nanowires Zap Cancer

22.12.2008
A new, innovative cancer treatment may be hotter, covered in more gold, and even be a better swimmer than Michael Phelps. Scientists at the University of Idaho are engineering multifunctional and dynamic nanowires coated in gold that swim through the bloodstream and attach to specific cancerous cells. Then, lectromagnetic fields heats the nanowires, destroying the cancerous cells.

The next big thing in cancer treatment may be hotter, covered in more gold, and even be a better swimmer than recent Olympic champion Michael Phelps.

Scientists at the University of Idaho are engineering multifunctional and dynamic nanowires coated in gold that swim through the bloodstream and attach to specific cancerous cells. Once there, an electromagnetic field heats the nanowires, which destroys the targeted cells. The research is supported by a new $425,000 grant, part of a multimillion dollar project funded by the Korean government as part of the International Global Collaboration Pioneer Program.

“Cancer is a dangerous enemy because radiation and chemical treatments cause a lot of side effects,” said Daniel Choi, associate professor of materials science and engineering at the University of Idaho and leader of the project. “We can’t avoid side effects 100 percent, but these nanowires will minimize the damage to healthy cells.”

The technology involves many steps requiring lots of continuing research, but each of the basic concepts already have been proven in laboratory tests.

Choi and his team have already created nanowires that can “swim” to their targets and heat up when exposed to low frequency electromagnetic fields, which are not harmful to human body. The next step is to make them biocompatible, meaning safe to introduce to the human body, and able to seek out specific cancer cells.

Choi believes the gold plating will take care of the biocompatibility. If not, he has several polymers in mind that he also believes would work.

As for seeking out specific cancer cells, Choi also is a member of and working with a University of Idaho group called BANTech – an interdisciplinary group that integrates nanomaterials research with cell biology and bioscience research. The group has identified several promising candidates for antibodies with which to coat the nanowires that would seek out and attach to specific cancer cells.

Once the technology has proven itself in the laboratory, it will be tested in live animals, and eventually human beings. Several Korean institutions, which are helping in every phase of research, will take the lead in that project. The institutions are Seoul National University, Korea University and the Korea Institute of Science and Technology.

“Collaborating with Korean institutions has been a wonderful experience full of mutual benefits and great achievements,” said Choi. “Multi-institutional, multi-national projects can provide students and researchers with opportunities to engage in cutting-edge investigations within an international research environment, which is very important to advancing science.”

Ken Kingery | Newswise Science News
Further information:
http://www.uidaho.edu
http://www.today.uidaho.edu/PhotoList.aspx

More articles from Health and Medicine:

nachricht New malaria analysis method reveals disease severity in minutes
14.08.2017 | University of British Columbia

nachricht New type of blood cells work as indicators of autoimmunity
14.08.2017 | Instituto de Medicina Molecular

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Climate change: In their old age, trees still accumulate large quantities of carbon

17.08.2017 | Earth Sciences

Modern genetic sequencing tools give clearer picture of how corals are related

17.08.2017 | Life Sciences

Superconductivity research reveals potential new state of matter

17.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>