Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Using PET/CT imaging, UCLA researchers can tell after a single treatment if chemotherapy is working

Findings will allow oncologists to discontinue therapies that aren't effective
Oncologists often have to wait months before they can determine whether a treatment is working. Now, using a non-invasive method, researchers at UCLA's Jonsson Comprehensive Cancer Center have shown that they can determine after a single cycle of chemotherapy whether the toxic drugs are killing the cancer or not.

Using a combination Positron Emission Tomography (PET) and computed tomography (CT) scanner, researchers monitored 50 patients undergoing treatment for high-grade soft tissue sarcomas. The patients were receiving neoadjuvant chemotherapy treatments to shrink their tumors prior to surgery.

The study found that response could be determined about a week after the first dose of chemotherapy drugs. Typically, patients are scanned at about three months into chemotherapy to determine whether the treatment is working.

"The question was, how early could we pick up a response? We wanted to see if we could determine response after a single administration of chemotherapy," said Dr. Fritz Eilber, an assistant professor of surgical oncology, director of the Sarcoma Program at UCLA's Jonsson Cancer Center and senior author of the study. "There's no point in giving a patient a treatment that isn't working. These treatments make patients very sick and have long-term serious side effects. "

The study appears in the April 15 issue of the journal Clinical Cancer Research.

PET scanning shows biochemical functions in real time, acting as a sort of molecular camera. For this study, Eilber and his team monitored the tumor's metabolic function, or how much sugar was being consumed by the cancer cells. Because they're growing out of control, cancer cells use much more sugar than do normal cells, making them light up under PET scanning using a glucose uptake probe called FDG. In order to identify an effective response to treatment, researchers needed to see a 35 percent decrease in the tumor's metabolic activity.

Of the 50 patients in the study, 28 did not respond and Eilber and his team knew within a week of their initial treatment. This allows the treatment course to be discontinued or changed to another more effective treatment, getting the patient to surgery more quickly.

"The significance of this study was that it identified people – more than half of those in the study – who were not going to benefit from the treatment early in the course of their therapy," Eilber said. "This information significantly helps guide patient care. Although this study was performed in patients scheduled for surgery, I think these findings will have an even greater impact on patients with inoperable tumors or metastatic disease as you get a much quicker evaluation of treatment effectiveness and can make decisions that will hugely impact quality of life."

Eilber said he was surprised how soon response to therapy could be determined.

"We had an idea that patients either respond or do not respond to treatment, but we weren't sure how early you could see that," he said. "I really was not sure we would be able to see effectiveness this early."

Eilber and his team will continue to follow the patients and a clinical trial currently is underway based on the results of this study. Eilber believes it will help personalize treatment for each patient and may one day become the standard of care.

Researchers also may use the non-invasive imaging method to gauge response to novel and targeted therapies. Eilber said that they are clinically testing new tracers as well. Instead of measuring glucose uptake, these probes look at cell growth. Response to therapy also may be tested using PET in other cancer types, he said.

The nearly two-year study represented a true multidisciplinary effort, Eilber said. Experts from surgery, medical oncology, molecular and medical pharmacology, radiology, pathology, orthopedics, nuclear medicine and biostatistics comprised the research team.

The study was funded by grants from the UCLA In Vivo Cellular and Molecular Imaging Centers and the Department of Energy.

UCLA's Jonsson Comprehensive Cancer Center has more than 350 researchers and clinicians engaged in disease research, prevention, detection, control, treatment and education. One of the nation's largest comprehensive cancer centers, the Jonsson center is dedicated to promoting research and translating basic science into leading-edge clinical studies. In July 2008, the Jonsson Cancer Center was named among the top 10 cancer centers nationwide by U.S. News & World Report, a ranking it has held for nine consecutive years.

Kim Irwin | EurekAlert!
Further information:

More articles from Health and Medicine:

nachricht Resolving the mystery of preeclampsia
21.10.2016 | Universitätsklinikum Magdeburg

nachricht New potential cancer treatment using microwaves to target deep tumors
12.10.2016 | University of Texas at Arlington

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>