Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


New Perspectives for Patients suffering from Brain Injury

The new findings from research on metabolic activities in inflamed nerve tissue carried out by Dr Matteo Bergami from the CECAD Excellence Cluster at the University of Cologne in collaboration with an international team of scientists generate new perspectives for many patients suffering from traumatic brain injury.

Their results open the path to a deeper understanding of the processes that take place in damaged nerve cells, particularly in astrocytes. This study now shows that inflammation can lead to changes in astrocyte mitochondria, causing them to fragment.

Joining their efforts, a team of researchers from the Excellence Clusters of Cologne (CECAD) and Munich (LMU), together with the University of Bologna (Italy), can now offer new insights into the metabolic processes taking place in damaged brain tissue. Their research has focused on astrocytes, the cells in the central nervous system that regulate energy metabolism and synapse functioning.

Given their important physiological role in the healthy brain, researchers have addressed how astrocytes may change their metabolic activity in response to nerve tissue inflammation, a condition caused by acute injury, stroke, or neurodegenerative diseases. This may reveal to be an essential aspect of most brain diseases as a failure of astrocyte reactivity during an inflammatory process may worsen the pathology and eventually accelerate neurodegeneration.

To date it has been assumed that nervous system cells react uniformly to acute brain damage such as that caused by traumatic injury. However, Dr Bergami and his team of researchers discovered that astrocytes within different zones of the lesion show different forms of reactivity in response to inflammatory insults. This reactivity especially affects mitochondria, the powerhouse of the cells.

The function of mitochondria is strictly dependent upon two types of dynamics: fusion and fission. These two reactions are key for maintaining mitochondrial architecture and function. Faulty regulation of these mitochondrial dynamics results in defective mitochondria, which can lead to cellular aging and trigger many neurodegenerative diseases.

The researchers were able to show that astrocytic mitochondria within the core of the damaged, highly proinflammatory brain area, demonstrate an accelerated tendency towards fission, leading to their fragmentation. In the surrounding zones, mitochondria show an increase in fusion.

The researchers also succeeded in discovering a key metabolic process regulating astrocyte mitochondrial function: they were able to show that autophagy, a process involving the self-digestion of components in the cell, is critical to maintain mitochondrial structure. In contrast to neurons, astrocytes survive surprisingly well to acute inflammation. The new study reveals that autophagy is the major mechanism conferring this resistance. When autophagy is ablated astrocytes loose their capability to regenerate their network which ultimately leads to astrocyte cell death.

Although the reorganisation of metabolic pathways triggered by inflammation goes beyond the influence of mitochondria, these research findings clearly demonstrate that mitochondrial function is absolutely essential to astrocyte survival. Additionally they provide new insights for our understanding of how brain cells react to inflammation. Further characterization of these metabolic pathways may hopefully enable the researchers to protect neurons from dying during acute or chronic neuroinflammation. This will potentially allow for the development of new approaches aimed at helping patients exposed to brain injury or stroke, in order to preserve brain function and improving the patient´s quality of life.

Dr Matteo Bergami
CECAD Cluster of Excellence at the University of Cologne
Tel. +49 (0) 221 478 841 71
Astrid Bergmeister
Head of CECAD PR & Marketing
Tel. + 49 (0) 221-478-84043

Astrid Bergmeister | idw
Further information:

More articles from Health and Medicine:

nachricht Resolving the mystery of preeclampsia
21.10.2016 | Universitätsklinikum Magdeburg

nachricht New potential cancer treatment using microwaves to target deep tumors
12.10.2016 | University of Texas at Arlington

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>