Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Perinatal bisphenol-A exposure may affect fertility

02.12.2010
Exposure to a ubiquitous environmental chemical during pregnancy may impair reproductive capacity of female offspring, according to a study published online in advance of print on December 2 in Environmental Health Perspectives. Fertility decreased over time in female mice that had been exposed during fetal and neonatal (perinatal) development to doses of bisphenol-A (BPA) that were lower than or equal to human environmental exposure levels.

"Mice exposed to BPA in the womb and during nursing subsequently had fewer successful pregnancies and delivered fewer pups over the course of the study," reported one of the study's co-senior authors, Ana M. Soto, MD, professor of anatomy and cellular biology at Tufts University School of Medicine (TUSM) and member of the cell, molecular and developmental biology program faculty at the Sackler School of Graduate Biomedical Sciences.

At the highest of three doses tested, only 60% of the BPA-exposed mice had four or more deliveries over a 32-week period, compared with 95% in the unexposed control group. Decline of the reproductive capacity of the female mice in this study was not obvious at first pregnancy, when the animals were very young, but manifested later in life with a decline in number of pups born per delivery.

"This finding is important because standard tests of reproductive toxicology currently consist of assessing the success of a first pregnancy in young animals. If subsequent pregnancies are not examined, relevant effects may be missed," said co-senior author Beverly S. Rubin, PhD, associate professor of anatomy and cellular biology at TUSM and member of the cell, molecular and developmental biology and neuroscience program faculties at the Sackler School.

"In addition, the infertility effect of BPA was dose-specific in our study. The lowest and highest doses we tested both impaired fertility, while the intermediate dose did not. This phenomenon, called non-monotonicity, is a common characteristic of hormone action. In other words, chemicals have to be tested at a variety of doses in order to avoid false "no effect" results," added co-senior author Carlos Sonnenschein, MD, professor of anatomy and cellular biology at TUSM and member of the cell, molecular and developmental biology program faculty at the Sackler School.

"BPA has effects that mimic those of estrogen, a natural hormone. Fetal and neonatal exposure to BPA has been shown to have other hormone-related effects in rodents, including increased risk of mammary and prostate cancers, altered behavior, and obesity. BPA has been found in the urine of over 92% of Americans tested, with higher levels in children and adolescents relative to adults. It has also been detected in human maternal and fetal plasma," said co-first author Perinaaz R. Wadia, PhD, a research associate in the Soto/Sonnenschein laboratory at TUSM.

"Our findings are potentially of great relevance to humans because BPA is used in the production of materials people are exposed to every day, such as polycarbonate plastics and the resins used to coat the inside of food and beverage cans," said co-first author Nicolas J. Cabaton, PhD, formerly a post-doctoral fellow in the Soto/Sonnenschein laboratory at TUSM and now at the French National Institute for Agricultural Research (INRA).

The authors compared the effects of BPA to those of diethylstilbestrol (DES), a hormonally active chemical that is known to have caused reproductive impairment in women exposed during fetal life, and concluded that the effects of these two chemicals on fertility were comparable. Similar to BPA, low doses of DES had failed to cause obvious reproductive problems when evaluated only at first pregnancy as in the standard tests used by regulatory agencies to determine toxicity.

The three doses of BPA tested are within the range of human exposure and below the Environmental Protection Agency (EPA) reference dose (i.e., the maximal acceptable daily dose). "Our results suggest that a more sensitive test, like the one used in this report should be adopted by regulatory agencies in order to uncover the true risk and possible epigenetic effects of suspected endocrine disruptors," said Soto.

Additional authors include Daniel Zalko, DVM, PhD, French National Institute for Agricultural Research (INRA), Cheryl M. Schaeberle, BS, laboratory coordinator in the Soto/Sonnenschein lab; Michael H. Askenase, BS, formerly a research technician in the Soto/Sonnenschein lab; Jennifer L. Gadbois, RN, Andrew P. Tharp, BS, and Gregory S. Whitt, BS, all research technicians in the Soto/Sonnenschein lab in the department of anatomy and cellular biology at TUSM.

This study was supported by the National Institute of Environmental Health Sciences, part of the National Institutes of Health.

Cabaton NJ, Wadia PR, Rubin BS, Zalko D, Schaeberle CM, Askenase MH, Gadbois JL, Tharp AP, Whitt GS, Sonnenschein C, Soto AM. Environmental Health Perspectives. 2010. "Perinatal exposure to environmentally relevant levels of bisphenol-A decreases fertility and fecundity in CD-1 mice." http://ehponline.org/article/info:doi/10.1289/ehp.1002559

About Tufts University School of Medicine and the Sackler School of Graduate Biomedical Sciences

Tufts University School of Medicine and the Sackler School of Graduate Biomedical Sciences at Tufts University are international leaders in innovative medical education and advanced research. The School of Medicine and the Sackler School are renowned for excellence in education in general medicine, biomedical sciences, special combined degree programs in business, health management, public health, bioengineering and international relations, as well as basic and clinical research at the cellular and molecular level. Ranked among the top in the nation, the School of Medicine is affiliated with six major teaching hospitals and more than 30 health care facilities. Tufts University School of Medicine and the Sackler School undertake research that is consistently rated among the highest in the nation for its effect on the advancement of medical science.

If you are a member of the media interested in learning more about this topic, or speaking with a faculty member at the Tufts University School of Medicine, the Sackler School of Graduate Biomedical Sciences, or another Tufts health sciences researcher, please contact Siobhan Gallagher at 617-636-6586.

Siobhan Gallagher | EurekAlert!
Further information:
http://www.tufts.edu

More articles from Health and Medicine:

nachricht Millions through license revenues
27.04.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht New High-Performance Center Translational Medical Engineering
26.04.2017 | Fraunhofer ITEM

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>