Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Peptic ulcer bacterium alters the body's defence system

30.06.2009
Helicobacter pylori survives in the body by manipulating important immune system cells. This is shown in a thesis from the Sahlgrenska Academy, University of Gothenburg, Sweden. The discovery may lead to new treatments against the common peptic ulcer bacterium.

About half of the world's population carries Helicobacter pylori, mainly in the stomach. Most infected individuals never experience any symptoms, but around 10% get peptic ulcers and around 1% develop stomach cancer.

'Carriers were often infected as children and if not treated with antibiotics, the bacterium remains in the body for life. The immune system alone is unable to eliminate the bacterium, and now we understand better why', says biologist Bert Kindlund, the author of the thesis.

The study shows that a type of cells in the immune system called regulatory T cells down-regulate the body's defence against Helicobacter pylori and thereby enable the bacterium to develop a chronic infection. 'If we could control the regulatory T cells, we could strengthen the immune system and help the body eliminate the bacterium. This could be a new treatment strategy against Helicobacter pylori', Kindlund continues.

In addition, the bacterium makes the immune system increase the number of regulatory T cells in the lining of the stomach. This also occurs with stomach cancer. 'An important question is where the increased number of regulatory T cells in the stomach lining come from. Knowing the answer to this question could help us develop a treatment for stomach cancer. What we have found so far is that the regulatory T cells are actively recruited from the bloodstream into the tumour, and once there they start multiplying faster', says Kindlund.

For more information please contact:
Bert Kindlund, biologist, telephone +46 (0)73 535 49 96, e-mail bert.kindlund@microbio.gu.se
Supervisors:
Samuel Lundin, Associate Professor, telephone +46 (0)31 786 6207, e-mail samuel.lundin@microbio.gu.se

Åsa Sjöling, Associate Professor, telephone +46 (0)31 786 62 32, e-mail asa.sjoling@microbio.gu.se

A thesis presented for the degree of Doctor of Philosophy (Medicine) at the Sahlgrenska Academy, Institute of Biomedicine, Department of Microbiology and Immunology.

The thesis is based on the following papers:
I. Bert Kindlund, Åsa Sjöling, Malin Hansson, Anders Edebo, Lars-Erik Hansson, Henrik Sjövall, Ann-Mari Svennerholm and B. Samuel Lundin
FOXP3-expressing CD4+ T-cell numbers increase in areas of duodenal gastric metaplasia and are associated to CD4+ T-cell aggregates in the duodenum of Helicobacter pylori-infected duodenal ulcer patients. Helicobacter 2009 June; 14 (3): 192-201
II. Karin Enarsson, Anna Lundgren, Bert Kindlund, Mikael Hermansson, Giovanna Roncador, Alison H Banham, B. Samuel Lundin and Marianne Quiding-Järbrink
Function and recruitment of mucosal regulatory T cells in human chronic Helicobacter pylori infection and gastric adenocarcinoma. Clin Immunol 2006 Dec; 121 (3): 358-68
III. B. Samuel Lundin, Karin Enarsson, Bert Kindlund, Anna Lundgren, Erik Johnsson, Marianne Quiding-Järbrink and Ann-Mari Svennerholm

The local and systemic T-cell response to Helicobacter pylori in gastric cancer patients is characterised by production of interleukin-10. Clin Immunol 2007 Nov; 125 (2) 205-13

Helena Aaberg | idw
Further information:
http://www.gu.se/

Further reports about: CD4+ Helicobacter pylori Peptic T cells T-cell immune system stomach cancer

More articles from Health and Medicine:

nachricht Researchers release the brakes on the immune system
18.10.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht Norovirus evades immune system by hiding out in rare gut cells
12.10.2017 | University of Pennsylvania School of Medicine

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Terahertz spectroscopy goes nano

20.10.2017 | Information Technology

Strange but true: Turning a material upside down can sometimes make it softer

20.10.2017 | Materials Sciences

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>