Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Penn study shows an ancient crop effective in protecting against a 21st century hazard

10.08.2011
A diet of flaxseed shows protective effects against radiation in animal models

Flax has been part of human history for well over 30,000 years, used for weaving cloth, feeding people and animals, and even making paint.

Now, researchers from the Perelman School of Medicine at the University of Pennsylvania have discovered that it might have a new use for the 21st century: protecting healthy tissues and organs from the harmful effects of radiation. In a study just published in BMC Cancer, researchers found that a diet of flaxseed given to mice not only protects lung tissues before exposure to radiation, but can also significantly reduce damage after exposure occurs.

"There are only a handful of potential mitigators of radiation effect, and none of them is nearly ready for the clinic," says the principal investigator Melpo Christofidou-Solomidou, PhD, research associate professor of Medicine, Pulmonary, Allergy and Critical Care Division. "Our current study demonstrates that dietary flaxseed, already known for its strong antioxidant and anti-inflammatory properties, works as both a mitigator and protector against radiation pneumonopathy."

In several separate experiments, the researchers fed one group of mice a diet supplemented with 10 percent flaxseed, either three weeks before a dose of X-ray radiation to the thorax or two, four, or six weeks after radiation exposure. A control group subjected to the same radiation dose was given the same diet but receiving an isocaloric control diet without the flaxseed supplement. After four months, only 40 percent of the irradiated control group survived, compared to 70 to 88 percent of the irradiated flaxseed-fed animals. Various studies of blood, fluids, and tissues were conducted.

Dr. Christofidou-Solomidou and her colleagues found that the flaxseed diet conferred substantial benefits regardless of whether it was initiated before or after irradiation. Mice on flaxseed displayed improved survival rates and mitigation of radiation pneumonitis, with increased blood oxygenation levels, higher body weight, lower pro-inflammatory cytokine levels, and greatly reduced pulmonary inflammation and fibrosis.

The latter finding is especially exciting, because while radiation-induced inflammatory damage can be potentially treated with steroidal therapy (in radiotherapy patients for example), lung fibrosis is essentially untreatable. "There's nothing you can give to patients to prevent fibrosis," Dr. Christofidou-Solomidou points out. "Once a lung becomes "stiff" from collagen deposition, it's irreversible. We have discovered that flaxseed not only prevents fibrosis, but it also protects after the onset of radiation damage."

Dr. Christofidou-Solomidou and her colleagues are focusing further research on the bioactive lignan component of flaxseed, known as SDG (secoisolariciresinol diglucoside), which is believed to confer its potent antioxidant properties. The lignan component also "regulates the transcription of antioxidant enzymes that protect and detoxify carcinogens, free radicals and other damaging agents", she says.

Flaxseed boasts many other qualities that make it particularly attractive as a radioprotector and mitigator. "Flaxseed is safe, it's very cheap, it's readily available, there's nothing you have to synthesize," Dr. Christofidou-Solomidou notes. "It can be given orally so it has a very convenient administration route. It can be packaged and manufactured in large quantities. Best of all, you can store it for very long periods of time." That makes it especially interesting to government officials looking to stockpile radioprotective substances in case of accidental or terrorist-caused radiological disasters.

Co-author Keith Cengel, MD, PhD, assistant professor of Radiation Oncology at Penn, explains that in such cases, "a big issue is the 'worried well' -- all the folks who probably weren't exposed but are concerned and want to do something." Many potential radioprotectors, however, could have risky side effects. Dr. Christofidou-Solomidou adds, "When you give something to 4 or 5 million 'worried well,' you have people with preexisting medical conditions. You can't give just anything to people with heart disease, for example. But this is absolutely safe. In fact, it is known to increase cardiovascular health, a finding shown by another group of Penn investigators a few years ago. It's loaded with omega-3 fatty acids."

Along with other researchers at the Perelman School of Medicine, the authors are conducting further pilot studies on the potential of flaxseed for mitigation of lung damage in patients awaiting lung transplants and those undergoing radiation therapy for the treatment of intra-thoracic malignancies. Dr. Christofidou-Solomidou is even conducting a pilot study for NASA on the benefits of flaxseed for astronauts on extended deep space missions. Lengthy space exploration missions require that the astronauts perform extravehicular activities (EVAs) for repairs, during which they can face exposure to high levels of solar and galactic radiation with the added risk factor of breathing 100 percent oxygen. "Hyperoxia superimposed with radiation could potentially cause some lung damage and some reason to worry for the astronauts," she says. "We are one of a handful of teams in the US that can study radiation in addition to hyperoxia. So now we're adding another level of complexity to the one-hit, radiation damage studies; the double-hit model is something novel, nobody has done it before."

The researchers are already convinced enough to incorporate flaxseed into their own routine. "I actually eat it every morning," says Dr. Cengel, noting, "The potential health benefits are significant and there is no known toxicity—it just makes good sense to me."

The study is funded by the National Institute of Allergy and Infectious Diseases (NIAID) and the Biomedical Advanced Research and Development Authority (BARDA) under a grant initiative focused on the development of novel medical countermeasures to prevent or mitigate pulmonary injury or restore function after exposure to ionizing radiation.

Penn Medicine is one of the world's leading academic medical centers, dedicated to the related missions of medical education, biomedical research, and excellence in patient care. Penn Medicine consists of the Raymond and Ruth Perelman School of Medicine at the University of Pennsylvania (founded in 1765 as the nation's first medical school) and the University of Pennsylvania Health System, which together form a $4 billion enterprise.

Penn's Perelman School of Medicine is currently ranked #2 in U.S. News & World Report's survey of research-oriented medical schools and among the top 10 schools for primary care. The School is consistently among the nation's top recipients of funding from the National Institutes of Health, with $507.6 million awarded in the 2010 fiscal year.

The University of Pennsylvania Health System's patient care facilities include: The Hospital of the University of Pennsylvania -- recognized as one of the nation's top 10 hospitals by U.S. News & World Report; Penn Presbyterian Medical Center; and Pennsylvania Hospital – the nation's first hospital, founded in 1751. Penn Medicine also includes additional patient care facilities and services throughout the Philadelphia region.

Penn Medicine is committed to improving lives and health through a variety of community-based programs and activities. In fiscal year 2010, Penn Medicine provided $788 million to benefit our community.

Jessica Mikulski | EurekAlert!
Further information:
http://www.uphs.upenn.edu

More articles from Health and Medicine:

nachricht GLUT5 fluorescent probe fingerprints cancer cells
20.04.2018 | Michigan Technological University

nachricht Scientists re-create brain neurons to study obesity and personalize treatment
20.04.2018 | Cedars-Sinai Medical Center

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Molecules Brilliantly Illuminated

Physicists at the Laboratory for Attosecond Physics, which is jointly run by Ludwig-Maximilians-Universität and the Max Planck Institute of Quantum Optics, have developed a high-power laser system that generates ultrashort pulses of light covering a large share of the mid-infrared spectrum. The researchers envisage a wide range of applications for the technology – in the early diagnosis of cancer, for instance.

Molecules are the building blocks of life. Like all other organisms, we are made of them. They control our biorhythm, and they can also reflect our state of...

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

Im Focus: Basel researchers succeed in cultivating cartilage from stem cells

Stable joint cartilage can be produced from adult stem cells originating from bone marrow. This is made possible by inducing specific molecular processes occurring during embryonic cartilage formation, as researchers from the University and University Hospital of Basel report in the scientific journal PNAS.

Certain mesenchymal stem/stromal cells from the bone marrow of adults are considered extremely promising for skeletal tissue regeneration. These adult stem...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Structured light and nanomaterials open new ways to tailor light at the nanoscale

23.04.2018 | Physics and Astronomy

On the shape of the 'petal' for the dissipation curve

23.04.2018 | Physics and Astronomy

Clean and Efficient – Fraunhofer ISE Presents Hydrogen Technologies at the HANNOVER MESSE 2018

23.04.2018 | Trade Fair News

VideoLinks
Science & Research
Overview of more VideoLinks >>>