Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Penn researchers repair immune system in leukemia patients following chemotherapy

12.12.2011
Treatment with patients' own cells may prevent infections commonly seen following treatment and prolong remission

A new treatment using leukemia patients' own infection-fighting cells appears to protect them from infections and cancer recurrence following treatment with fludarabine-based chemotherapy, according to new research from the Perelman School of Medicine at the University of Pennsylvania.

The new process is a step toward eliminating the harsh side effects that result from the commonly prescribed drug, which improves progression-free survival in patients with chronic lymphocytic leukemia (CLL) but destroys patients' healthy immune cells in the process, leaving them vulnerable to serious viral and bacterial infections. The drug's effects on the immune system tend to be so violent that it has been dubbed "AIDS in a bottle."

Today at the 53rd American Society of Hematology Annual Meeting, the research team will present results showing how they use a patient's own T cells to repair his or her immune system after fludarabine treatment. With a restored immune system, patients can stop taking prophylactic antibiotics and may have prolonged progression-free survival.

"Fludarabine is a double-edged sword," says Stephen J. Schuster, MD, an associate professor in the division of Hematology-Oncology and director of the Lymphoma Program at Penn's Abramson Cancer Center. "Although it is very active at killing CLL cells, it is also very active at killing normal cells in the immune system, particularly T lymphocytes, which are the master regulators of the immune system. So you rid the patient of their disease, but you also rid them of a normal immune system."

Thirty-four patients enrolled in the multicenter study. Prior to chemotherapy treatment, the researchers isolated healthy T lymphocytes from each patient's blood. When the patient finished chemotherapy, the team grew the T cells in Penn's Clinical Cell and Vaccine Production Facility using a technique that induces them to proliferate rapidly. The researchers then infused the expanded T cells back into the patient. "What we showed was that by giving them back their own T cells after treatment, we can restore patients' immune systems," Schuster said.

"Within four weeks of the T cell infusion, their T cell counts were within the normal range."

After chemotherapy and prior to T cell infusion, the median CD4 T cell count for fludarabine-treated patients was 119 cells/ml blood and the median CD8 T cell count was 80 cells/ml. Thirty days after the patients received the infusion of their own T cells, the median cell counts were in the normal range, at 373 cells/ml and 208 cells/ml for CD4 and CD8 cells, respectively. The T cell numbers remained in the normal range beyond 90 days, leading Schuster and colleagues to conclude that the autologous T cell transfer repaired the immune system of patients.

Although all of the patients' T cell counts returned to the normal range after treatment, not all patients responded equally well to the T cell therapy. Patients who had a complete response to chemotherapy had a more robust T cell recovery than did patients who had only a partial response. "We believe that having a complete remission of CLL seems to create a larger space for the normal immune cells to expand into," Schuster says. "Somehow, the cancer seems to interfere with recovery of the immune system."

In addition to quashing the complications ordinarily associated with treatment, the team hopes that the restored immune system will help keep the cancer in check. At a median follow-up of 14 months after T cell infusion, two-thirds of the patients remain progression-free. Longer follow up will be needed to compare treatment results for patients receiving T cells with published results for patients receiving similar chemotherapy without T cell support.

What is clear from the small trial is that patients can safely stop prophylactic antibiotic therapy after their T cell numbers rebound. Physicians regularly keep CLL patients on extended prophylactic antibiotic therapy to help stave off infections. In this study, though, patients stopped taking antibiotics about a month after receiving T cells without developing significant infections.

In addition to the Penn researchers, investigators from the MD Anderson Cancer Center, the Baylor College of Medicine, Texas Children's Hospital, and the Methodist Hospital in Houston also participated in the study.

The study was funded by the CLL Global Research Foundation.

This research will be presented Sunday, December 11, 2011 between 6 PM and 8 PM in Hall GH of the San Diego Convention Center.

Penn Medicine is one of the world's leading academic medical centers, dedicated to the related missions of medical education, biomedical research, and excellence in patient care. Penn Medicine consists of the Raymond and Ruth Perelman School of Medicine at the University of Pennsylvania (founded in 1765 as the nation's first medical school) and the University of Pennsylvania Health System, which together form a $4 billion enterprise.

Penn's Perelman School of Medicine is currently ranked #2 in U.S. News & World Report's survey of research-oriented medical schools and among the top 10 schools for primary care. The School is consistently among the nation's top recipients of funding from the National Institutes of Health, with $507.6 million awarded in the 2010 fiscal year.

The University of Pennsylvania Health System's patient care facilities include: The Hospital of the University of Pennsylvania -- recognized as one of the nation's top 10 hospitals by U.S. News & World Report; Penn Presbyterian Medical Center; and Pennsylvania Hospital – the nation's first hospital, founded in 1751. Penn Medicine also includes additional patient care facilities and services throughout the Philadelphia region.

Penn Medicine is committed to improving lives and health through a variety of community-based programs and activities. In fiscal year 2010, Penn Medicine provided $788 million to benefit our community.

Holly Auer | EurekAlert!
Further information:
http://www.uphs.upenn.edu

More articles from Health and Medicine:

nachricht Investigators may unlock mystery of how staph cells dodge the body's immune system
22.09.2017 | Cedars-Sinai Medical Center

nachricht Monitoring the heart's mitochondria to predict cardiac arrest?
21.09.2017 | Boston Children's Hospital

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>