Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Penn researchers repair immune system in leukemia patients following chemotherapy

12.12.2011
Treatment with patients' own cells may prevent infections commonly seen following treatment and prolong remission

A new treatment using leukemia patients' own infection-fighting cells appears to protect them from infections and cancer recurrence following treatment with fludarabine-based chemotherapy, according to new research from the Perelman School of Medicine at the University of Pennsylvania.

The new process is a step toward eliminating the harsh side effects that result from the commonly prescribed drug, which improves progression-free survival in patients with chronic lymphocytic leukemia (CLL) but destroys patients' healthy immune cells in the process, leaving them vulnerable to serious viral and bacterial infections. The drug's effects on the immune system tend to be so violent that it has been dubbed "AIDS in a bottle."

Today at the 53rd American Society of Hematology Annual Meeting, the research team will present results showing how they use a patient's own T cells to repair his or her immune system after fludarabine treatment. With a restored immune system, patients can stop taking prophylactic antibiotics and may have prolonged progression-free survival.

"Fludarabine is a double-edged sword," says Stephen J. Schuster, MD, an associate professor in the division of Hematology-Oncology and director of the Lymphoma Program at Penn's Abramson Cancer Center. "Although it is very active at killing CLL cells, it is also very active at killing normal cells in the immune system, particularly T lymphocytes, which are the master regulators of the immune system. So you rid the patient of their disease, but you also rid them of a normal immune system."

Thirty-four patients enrolled in the multicenter study. Prior to chemotherapy treatment, the researchers isolated healthy T lymphocytes from each patient's blood. When the patient finished chemotherapy, the team grew the T cells in Penn's Clinical Cell and Vaccine Production Facility using a technique that induces them to proliferate rapidly. The researchers then infused the expanded T cells back into the patient. "What we showed was that by giving them back their own T cells after treatment, we can restore patients' immune systems," Schuster said.

"Within four weeks of the T cell infusion, their T cell counts were within the normal range."

After chemotherapy and prior to T cell infusion, the median CD4 T cell count for fludarabine-treated patients was 119 cells/ml blood and the median CD8 T cell count was 80 cells/ml. Thirty days after the patients received the infusion of their own T cells, the median cell counts were in the normal range, at 373 cells/ml and 208 cells/ml for CD4 and CD8 cells, respectively. The T cell numbers remained in the normal range beyond 90 days, leading Schuster and colleagues to conclude that the autologous T cell transfer repaired the immune system of patients.

Although all of the patients' T cell counts returned to the normal range after treatment, not all patients responded equally well to the T cell therapy. Patients who had a complete response to chemotherapy had a more robust T cell recovery than did patients who had only a partial response. "We believe that having a complete remission of CLL seems to create a larger space for the normal immune cells to expand into," Schuster says. "Somehow, the cancer seems to interfere with recovery of the immune system."

In addition to quashing the complications ordinarily associated with treatment, the team hopes that the restored immune system will help keep the cancer in check. At a median follow-up of 14 months after T cell infusion, two-thirds of the patients remain progression-free. Longer follow up will be needed to compare treatment results for patients receiving T cells with published results for patients receiving similar chemotherapy without T cell support.

What is clear from the small trial is that patients can safely stop prophylactic antibiotic therapy after their T cell numbers rebound. Physicians regularly keep CLL patients on extended prophylactic antibiotic therapy to help stave off infections. In this study, though, patients stopped taking antibiotics about a month after receiving T cells without developing significant infections.

In addition to the Penn researchers, investigators from the MD Anderson Cancer Center, the Baylor College of Medicine, Texas Children's Hospital, and the Methodist Hospital in Houston also participated in the study.

The study was funded by the CLL Global Research Foundation.

This research will be presented Sunday, December 11, 2011 between 6 PM and 8 PM in Hall GH of the San Diego Convention Center.

Penn Medicine is one of the world's leading academic medical centers, dedicated to the related missions of medical education, biomedical research, and excellence in patient care. Penn Medicine consists of the Raymond and Ruth Perelman School of Medicine at the University of Pennsylvania (founded in 1765 as the nation's first medical school) and the University of Pennsylvania Health System, which together form a $4 billion enterprise.

Penn's Perelman School of Medicine is currently ranked #2 in U.S. News & World Report's survey of research-oriented medical schools and among the top 10 schools for primary care. The School is consistently among the nation's top recipients of funding from the National Institutes of Health, with $507.6 million awarded in the 2010 fiscal year.

The University of Pennsylvania Health System's patient care facilities include: The Hospital of the University of Pennsylvania -- recognized as one of the nation's top 10 hospitals by U.S. News & World Report; Penn Presbyterian Medical Center; and Pennsylvania Hospital – the nation's first hospital, founded in 1751. Penn Medicine also includes additional patient care facilities and services throughout the Philadelphia region.

Penn Medicine is committed to improving lives and health through a variety of community-based programs and activities. In fiscal year 2010, Penn Medicine provided $788 million to benefit our community.

Holly Auer | EurekAlert!
Further information:
http://www.uphs.upenn.edu

More articles from Health and Medicine:

nachricht Scientists learn more about how gene linked to autism affects brain
19.06.2018 | Cincinnati Children's Hospital Medical Center

nachricht Overdosing on Calcium
19.06.2018 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Temperature-controlled fiber-optic light source with liquid core

In a recent publication in the renowned journal Optica, scientists of Leibniz-Institute of Photonic Technology (Leibniz IPHT) in Jena showed that they can accurately control the optical properties of liquid-core fiber lasers and therefore their spectral band width by temperature and pressure tuning.

Already last year, the researchers provided experimental proof of a new dynamic of hybrid solitons– temporally and spectrally stationary light waves resulting...

Im Focus: Overdosing on Calcium

Nano crystals impact stem cell fate during bone formation

Scientists from the University of Freiburg and the University of Basel identified a master regulator for bone regeneration. Prasad Shastri, Professor of...

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

Creating a new composite fuel for new-generation fast reactors

20.06.2018 | Materials Sciences

Game-changing finding pushes 3D-printing to the molecular limit

20.06.2018 | Materials Sciences

Could this material enable autonomous vehicles to come to market sooner?

20.06.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>