Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Penn Researchers Find Neural Signature of ‘Mental Time Travel’

19.07.2011
Almost everyone has experienced one memory triggering another, but explanations for that phenomenon have proved elusive. Now, University of Pennsylvania researchers have provided the first neurobiological evidence that memories formed in the same context become linked, the foundation of the theory of episodic memory.

The research was conducted by professor Michael Kahana of the Department of Psychology in the School of Arts and Sciences and graduate student Jeremy R. Manning, of the Neuroscience Graduate Group in Penn’s Perelman School of Medicine. They collaborated with Gordon Baltuch and Brian Litt of the departments of Neurology and Psychology at the medical school and Sean M. Polyn of Vanderbilt University.

Their research was published in the journal Proceedings of the National Academy of Sciences.

“Theories of episodic memory suggest that when I remember an event, I retrieve its earlier context and make it part of my present context,” Kahana said. “When I remember my grandmother, for example, I pull back all sorts of associations of a different time and place in my life; I’m also remembering living in Detroit and her Hungarian cooking. It’s like mental time travel. I jump back in time to the past, but I'm still grounded in the present.”

To investigate the neurobiological evidence for this theory, the Penn team combined a centuries-old psychological research technique — having subjects memorize and recall a list of unrelated words — with precise brain activity data that can only be acquired via neurosurgery.

The study’s participants were all epilepsy patients who had between 50 and 150 electrodes implanted throughout their brains. This was in an effort to pinpoint the region of the brain where their seizures originated. Because doctors had to wait for seizures to naturally occur in order to study them, the patients lived with the implanted electrodes for a period of weeks.

“We can do direct brain recordings in monkeys or rats, but with humans one can only obtain these recordings when neurosurgical patients, who require implanted electrodes for seizure mapping, volunteer to participate in memory experiments,” Kahana said. “With these recordings, we can relate what happens in the memory experiment on a millisecond-by-millisecond basis to what's changing in the brain.”

The memory experiment consisted of patients memorizing lists of 15 unrelated words. After seeing a list of the words in sequence, the subjects were distracted by doing simple arithmetic problems. They were then asked to recall as many words as they could in any order. Their implanted electrodes measured their brain activity at each step, and each subject read and recalled dozens of lists to ensure reliable data.

“By examining the patterns of brain activity recorded from the implanted electrodes,” Manning said, “we can measure when the brain’s activity is similar to a previously recorded pattern. When a patient recalls a word, their brain activity is similar to when they studied the same word. In addition, the patterns at recall contained traces of other words that were studied prior to the recalled word.”

“What seems to be happening is that when patients recall a word, they bring back not only the thoughts associated with the word itself but also remnants of thoughts associated with other words they studied nearby in time,” he said.

The findings provide a brain-based explanation of a memory phenomenon that people experience every day.

“This is why two friends you met at different points in your life can become linked in your memory,” Kahana said. “Along your autobiographical timeline, contextual associations will exist at every time scale, from experiences that take place over the course of years to experiences that take place over the course of minutes, like studying words on a list.”

The research was supported by the National Institutes of Mental Health and the Dana Foundation.

Evan Lerner | EurekAlert!
Further information:
http://www.upenn.edu

More articles from Health and Medicine:

nachricht Speed data for the brain’s navigation system
06.12.2016 | Deutsches Zentrum für Neurodegenerative Erkrankungen e.V. (DZNE)

nachricht Study suggests possible new target for treating and preventing Alzheimer's
02.12.2016 | Oregon Health & Science University

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Simple processing technique could cut cost of organic PV and wearable electronics

06.12.2016 | Materials Sciences

3-D printed kidney phantoms aid nuclear medicine dosing calibration

06.12.2016 | Medical Engineering

Robot on demand: Mobile machining of aircraft components with high precision

06.12.2016 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>