Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Penn researchers find Epstein Barr-like virus infects and may cause cancer in dogs

13.03.2012
More than 90 percent of humans have antibodies to the Epstein Barr virus. Best known for causing mononucleosis, or "the kissing disease," the virus has also been implicated in more serious conditions, including Hodgkin's, non-Hodgkin's and Burkitt's lymphomas. Yet little is known about exactly how EBV triggers these diseases.

Now a team of researchers from the University of Pennsylvania School of Veterinary Medicine and Penn's Perelman School of Medicine has the first evidence that an Epstein Barr-like virus can infect and may also be responsible for causing lymphomas in man's best friend.

The findings suggest that domestic dogs possess a similar biology to humans with respect to EBV infection. That could allow scientists to study dogs to help uncover the mechanisms by which EBV leads to cancer in certain people.

"There are no large-animal spontaneous models of EBV infection and virus-associated disease, and most studies investigating viral disease are performed in non-human primates, which are very expensive," said Nicola Mason, senior author of the study and an assistant professor of medicine and pathobiology at Penn Vet. "Discovering that dogs can get infected with this virus like people do may provide us with a long-sought-after model for EBV-associated disease."

Mason's team at Penn Vet included Shih-Hung Huang, Philip Kozak, Jessica Kim, George Habineza-Ndikuyeze, Charles Meade, Anita Gaurnier-Hausser and Reema Patel. The team worked closely with Erle Robertson, professor of microbiology at the Perelman School of Medicine.

Their work was published online March 8 in the journal Virology.

In humans, the Epstein Barr virus infects B cells. After an acute phase of infection, of which many people are not even aware, the virus goes into a latent phase. Most people show no symptoms during this phase, but, in some, EBV promotes unnatural growth of B cells, which contributes to the development of lymphoma.

Meanwhile, dogs develop lymphomas that share some characteristics with the human equivalents. These conditions are relatively common in certain breeds. In golden retrievers, for instance, one out of every eight dogs develops lymphoma.

Yet, "the paradigm up until now was that EBV only infects humans," Mason said. "It is an extremely successful virus, and most people are infected. Since humans and domestic dogs have cohabited for around 15,000 years, we hypothesized that the virus may have adapted to another host. "

To search for evidence of infection, Mason and colleagues obtained samples of blood from client-owned dogs of various breeds brought to Penn Vet for care. In 48 dogs with lymphoma and 41 without the disease, the researchers first looked to see if the pets had antibodies against proteins specific to the EBV capsid, the protein shell of the virus. The test is nearly identical to one that physicians use to detect exposure to EBV in humans.

The researchers observed that eight of the dogs with lymphoma and three of those without it had high levels of antibodies against EBV proteins, indicating that a portion of the dogs had been exposed to a virus very similar to EBV.

While the presence of antibodies confirms that a dog has been exposed to a virus, the team wanted to know whether the virus had a direct association with the tumors in dogs with lymphoma. Finding viral elements, including DNA, within lymphomas in humans is an indication that the tumor is associated with the virus, therefore Penn researchers looked to see if they could find virus in the dog tumors.

Using the polymerase chain reaction, which amplifies specific DNA sequences, the researchers analyzed lymph nodes of dogs with and without B cell lymphoma. In two dogs with lymphoma, they were able to identify a portion of DNA very similar to a sequence in EBV. They found no evidence of the same DNA in the healthy dogs.

They repeated similar tests with other stretches of EBV DNA, finding evidence of EBV-like DNA in the cancer cells of three of nine dogs with lymphoma. They also identified a virus-associated protein in the malignant lymph nodes of two of nine dogs with lymphoma.

Finally, examining cancerous B cells under an electron microscope revealed what appeared to be viral particles, similar to what what has been seen in the tumor cells of humans with EBV-linked lymphomas.

Taken together, the researchers' discoveries indicate that some dogs are naturally infected with a virus similar or identical to EBV and that, as in humans, the virus appears linked in certain cases with canine lymphomas.

That such a large percentage of humans are exposed to EBV and yet only a small fraction develop cancers indicates that there may be a genetic component to EBV-associated cancer susceptibility.

"With additional studies within certain breeds of dog," Mason said, "we hope to provide insights into genetic factors that may predispose to virus associated lymphoma. Furthermore, this spontaneous dog model may help us evaluate new treatments for EBV-related lymphomas or investigate strategies to prevent those cancers from developing in the first place."

The study was supported by the University of Pennsylvania's Veterinary Center for Infectious Disease, the Abramson Family Cancer Research Institute at the University of Pennsylvania and the National Cancer Institute.

Katherine Unger Baillie | EurekAlert!
Further information:
http://www.upenn.edu

More articles from Health and Medicine:

nachricht Nanoparticles as a Solution against Antibiotic Resistance?
15.12.2017 | Friedrich-Schiller-Universität Jena

nachricht Plasmonic biosensors enable development of new easy-to-use health tests
14.12.2017 | Aalto University

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Engineers program tiny robots to move, think like insects

15.12.2017 | Power and Electrical Engineering

One in 5 materials chemistry papers may be wrong, study suggests

15.12.2017 | Materials Sciences

New antbird species discovered in Peru by LSU ornithologists

15.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>