Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Penn Research Reveals New Aspect of Platelet Behavior in Heart Attacks: Clots Can Sense Blood Flow

The disease atherosclerosis involves the build up of fatty tissue within arterial walls, creating unstable structures known as plaques.

These plaques grow until they burst, rupturing the wall and causing the formation of a blood clot within the artery. These clots also grow until they block blood flow; in the case of the coronary artery, this can cause a heart attack.

New research from the University of Pennsylvania has shown that clots forming under arterial-flow conditions have an unexpected ability to sense the surrounding blood moving over it. If the flow stops, the clot senses the decrease in flow and this triggers a contraction similar to that of a muscle. The contraction squeezes out water, making the clot denser.

Better understanding of the clotting dynamics that occur in atherosclerosis, as opposed to the dynamics at play in closing a wound, could lead to more effective drugs for heart-attack prevention.

The research was conducted by graduate student Ryan Muthard and Scott Diamond, professor and chair of the Department of Chemical and Biomolecular Engineering in the School of Engineering and Applied Science.

Their work was published in the journal Arteriosclerosis, Thrombosis and Vascular Biology, which is published by the American Heart Association.

“Researchers have known for decades that blood sitting in a test tube will clot and then contract to squeeze out water,” Muthard said. “Yet clots observed inside injured mouse blood vessels don’t display much contractile activity. We never knew how to reconcile these two studies, until an unexpected observation in the lab.”
Using a specially designed microfluidic device, the researchers pulsed fluorescent dye across a clot to investigate how well it blocked bleeding. When they stopped the flow in order to adjust a valve to deliver the dye, the researchers were startled to see that a massive contraction was triggered in the clot. If they delivered the dye without stopping flow, there was no change in the clot properties.

“We think this may be one of the fundamental differences between clots formed inside blood vessels that cause thrombosis and clots formed when blood slowly pools around a leaking blood vessel during a bleeding event,” Diamond said. “The flow sensing alters the clot mechanics.”
To investigate this alteration, the researchers used an intracellular fluorescent dye that binds to calcium. They found that when the flow stops, the platelets’ calcium levels increase and they become activated. By adding drugs that block ADP and thromboxane, chemicals involved in the clotting process, the researchers were able to prevent this platelet calcium mobilization and stop the contraction.

Millions of patients already take drugs that target these chemical pathways: P2Y12 inhibitors, such as Plavix, block ADP signaling in platelets, and aspirin blocks platelets’ synthesis of thromboxane. This discovery suggests that these drugs may be interfering with contractile mechanisms that are triggered when ADP and thromboxane become elevated, such as when the flow around the clot decreases or stops. Beyond slowing the growth of clots, these anti-platelet drugs may also be altering the mechanics of the clot by preventing contraction.

“It is an example of ‘quorum sensing’ by the platelets in the clots,” Diamond said. “The platelets are sensing each other and the prevailing environment. This causes them to release ADP and thromboxane, but it is rapidly diluted away by the surrounding blood flow.

“However, when the flow over the clot decreases or stops, the ADP and thromboxane levels rapidly build up, and this drives platelet contraction,” Diamond said.

The research was supported by the National Institutes of Health.

Evan Lerner | EurekAlert!
Further information:

More articles from Health and Medicine:

nachricht New potential cancer treatment using microwaves to target deep tumors
12.10.2016 | University of Texas at Arlington

nachricht Breakthrough in Mapping Nicotine Addiction Could Help Researchers Improve Treatment
04.10.2016 | UT Southwestern Medical Center

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Innovative technique for shaping light could solve bandwidth crunch

20.10.2016 | Physics and Astronomy

Finding the lightest superdeformed triaxial atomic nucleus

20.10.2016 | Physics and Astronomy

NASA's MAVEN mission observes ups and downs of water escape from Mars

20.10.2016 | Physics and Astronomy

More VideoLinks >>>