Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Penn Medicine researcher unveils findings on 2 new weapons against thyroid cancer

30.09.2013
Tumor genetics, cancer cell signaling discoveries pave way for use of new therapies

For many years, patients with advanced thyroid cancer faced bleak prospects and no viable treatment options. But now, building on recent discoveries about the genetics and cell signaling pathways of thyroid tumors, researchers are developing exciting new weapons against the disease, using kinase inhibitors that target tumor cell division and blood vessels.

Two recent clinical trials led by a researcher from the Perelman School of Medicine at the University of Pennsylvania showcase the great promise of these new approaches. The work will be presented at the European Cancer Congress (ECCO 17 - ESMO 38 - ESTRO 32) in Amsterdam today.

The first study provides additional data from the phase III DECISION trial of the drug sorafenib, a kinase inhibitor already approved for treatment of kidney and liver cancer, which was presented as a plenary during the 2013 annual American Society of Clinical Oncology meeting. In the newly released findings, lead author Marcia Brose, MD, PhD, an assistant professor in the department of Otorhinolarlyngology:

Head and Neck Surgery and the division of Hematology/Oncology in the Abramson Cancer Center, and her colleagues examined the effectiveness of sorafenib on thyroid cancers that harbor BRAF and RAS mutations. They previously reported that for patients who received sorafenib, progression free survival was 10.8 months vs. 5.8 months in the placebo arm. Of the 417 patients enrolled in the trial, 256 had tumors collected for genetic analysis. As they expected, the most common mutations were found in the BRAF and RAS genes. However, the analyses show that all groups, regardless of the presence of a BRAF and RAS mutation benefited from treatment with sorafenib.

"Our results are important because they show that regardless of the presence of these two common genetic changes, the group that was treated with sorafenib did better than the placebo," Brose says. "There was no subgroup that didn't appear to benefit from the intervention with the sorafenib." The use of sorafenib for the first line treatment for advanced differentiated thyroid cancer is now being evaluated for approval by the FDA, which would represent the first effective drug for advanced thyroid patients in more than 40 years.

The second study Brose will present during the European Cancer Congress focused on the subgroup of patients with papillary thyroid cancer (PTC), which is the most prevalent form of advanced thyroid cancer. About half of PTC patients harbor the BRAFV600E mutation, which is also present in melanomas that can be successfully treated with BRAF inhibitor drugs. "In this phase II study, we took the BRAFV600E inhibitor, vemurafenib, and studied it in BRAF-mutated papillary thyroid cancer patients to see if there's an effect," Brose explained. Approximately 50 PTC patients with the BRAFV600E mutation were enrolled in the study, all with progressive disease that had failed to respond to radioactive iodine treatment. The patients were divided into two groups: one that had not received sorafenib or other similar kinase inhibitor, and one that had.

The progression free survival of the treatment naïve group was 15.6 months and had a response rate of 35 percent, while the progression free survival in the previously treated group was 6.3 months with a response rate of26 percent. "Our results show that we can effectively treat PTC patients that have progressive disease by targeting a common mutation, and produce clinically meaningful periods of progression free survival," Brose said.

Taken together, the two trials offer substantial new hope for patients with progressive thyroid cancer. "A few years ago there was nothing to offer these patients," Brose says. "By understanding similarities across different types of cancers, we have been able to show that therapies previously shown to be effective in other cancers, such as liver, kidney and bone, can be effectively used to treat a rare cancer, providing significant hope to these patients."

Penn Medicine is one of the world's leading academic medical centers, dedicated to the related missions of medical education, biomedical research, and excellence in patient care. Penn Medicine consists of the Raymond and Ruth Perelman School of Medicine at the University of Pennsylvania (founded in 1765 as the nation's first medical school) and the University of Pennsylvania Health System, which together form a $4.3 billion enterprise.

The Perelman School of Medicine has been ranked among the top five medical schools in the United States for the past 16 years, according to U.S. News & World Report's survey of research-oriented medical schools. The School is consistently among the nation's top recipients of funding from the National Institutes of Health, with $398 million awarded in the 2012 fiscal year.

The University of Pennsylvania Health System's patient care facilities include: The Hospital of the University of Pennsylvania -- recognized as one of the nation's top "Honor Roll" hospitals by U.S. News & World Report; Penn Presbyterian Medical Center; Chester County Hospital; Penn Wissahickon Hospice; and Pennsylvania Hospital -- the nation's first hospital, founded in 1751. Additional affiliated inpatient care facilities and services throughout the Philadelphia region include Chestnut Hill Hospital and Good Shepherd Penn Partners, a partnership between Good Shepherd Rehabilitation Network and Penn Medicine.

Penn Medicine is committed to improving lives and health through a variety of community-based programs and activities. In fiscal year 2012, Penn Medicine provided $827 million to benefit our community.

Holly Auer | EurekAlert!
Further information:
http://www.uphs.upenn.edu

More articles from Health and Medicine:

nachricht NIST scientists discover how to switch liver cancer cell growth from 2-D to 3-D structures
17.11.2017 | National Institute of Standards and Technology (NIST)

nachricht High speed video recording precisely measures blood cell velocity
15.11.2017 | ITMO University

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

Im Focus: Wrinkles give heat a jolt in pillared graphene

Rice University researchers test 3-D carbon nanostructures' thermal transport abilities

Pillared graphene would transfer heat better if the theoretical material had a few asymmetric junctions that caused wrinkles, according to Rice University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

NASA detects solar flare pulses at Sun and Earth

17.11.2017 | Physics and Astronomy

NIST scientists discover how to switch liver cancer cell growth from 2-D to 3-D structures

17.11.2017 | Health and Medicine

The importance of biodiversity in forests could increase due to climate change

17.11.2017 | Studies and Analyses

VideoLinks
B2B-VideoLinks
More VideoLinks >>>