Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

First patients in US receive non-surgical device of sunken chest syndrome

22.11.2012
Surgeons at Children's Hospital of The King's Daughters (CHKD) have fitted a patient with a device that might eliminate the need for surgery in some patients with one of the world's most common chest deformities, pectus excavatum, often called sunken chest syndrome.

Known as the vacuum bell, it works much like devices in body shops that use sustained vacuum to pop out a dent.

"Years from now, we may look at the surgeries and realize that many of these conditions could have been corrected with vacuum devices," said Dr. Robert J. Obermeyer, who is leading the project at CHKD, the nation's top research center for chest-wall deformities and a training site for surgeons from around the world.

Pectus excavatum is the most common congenital deformity of the chest wall. Caused by an overgrowth of cartilage in the ribs and sternum, its defining feature is a depression, or indentation, in the middle of the chest.

Until the 1980s, the only correction was a radical surgery that involved removing cartilage and ribs. In the late 1980s, Dr. Donald Nuss, a CHKD pediatric surgeon, developed a minimally invasive technique that involved placing a concave bar into the chest then flipping it over so that it pushes the depression of the chest upward. The Nuss Procedure has since become the surgical gold standard.

Today, CHKD performs more pectus excavatum surgeries than any facility in the United States and remains a major training site for surgeons and a center for research on chest wall deformities.

But even the minimally invasive surgery results in an average hospital stay of five days. Pectus specialists have been exploring less invasive techniques; research is being conducted in San Francisco on implanting magnets in the chest wall that are attracted to a chest brace.

The vacuum bell procedure marks the first use by pectus specialists of a non-surgical device. "CHKD has always made efforts to minimize surgical intervention and I believe this could eliminate the need for surgery in some pectus excavatum patients," said Dr. Obermeyer, who has been instrumental in bringing the technology to the U.S.

The vacuum bell device looks something like a large, silicone doughnut, with a bulb attached to remove air pressure. It must be fitted to each patient and fit snugly on the chest. The bulb is used to create a vacuum inside the device.

The vacuum bell must be used about an hour a day and slowly pulls up the depressed area of cartilage. After three to six months of use, the depression in the chest reaches close to the maximum correction. The patient must continue to use the vacuum bell for about two years to make the correction permanent, similar to wearing a retainer after one's teeth are straightened.

In Europe, the concept of a vacuum device to correct sunken chest syndrome has been discussed for decades, but technology lagged behind. German engineer Eckart Klobe, who suffered pectus excavatum, developed hundreds of prototypes before developing a device that worked reliably.

The vacuum bell has been used in Europe for several years, and research suggests that the correction might be permanent. Dr. Obermeyer visited pectus specialists in Switzerland who used the vacuum bell, met with Klobe, toured the production facility where the devices are manufactured and helped expedite its categorization by the Food and Drug Administration as a class 1 medical device, which allows for sale and use in the United States.

While the vacuum bell is non-surgical, it should be used under the supervision of a pectus excavatum specialist because underlying cardiac conditions can make the device dangerous, Dr. Obermeyer cautioned.

CHKD this week performed the first two procedures by pectus experts in the United States and will monitor their progress as well as the long-term effectiveness of the innovative non-surgical procedure.

Greg Raver-Lampman | EurekAlert!
Further information:
http://www.chkd.org

More articles from Health and Medicine:

nachricht 3D images of cancer cells in the body: Medical physicists from Halle present new method
16.05.2018 | Martin-Luther-Universität Halle-Wittenberg

nachricht Better equipped in the fight against lung cancer
16.05.2018 | Friedrich-Alexander-Universität Erlangen-Nürnberg

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

Im Focus: Computer-Designed Customized Regenerative Heart Valves

Cardiovascular tissue engineering aims to treat heart disease with prostheses that grow and regenerate. Now, researchers from the University of Zurich, the Technical University Eindhoven and the Charité Berlin have successfully implanted regenerative heart valves, designed with the aid of computer simulations, into sheep for the first time.

Producing living tissue or organs based on human cells is one of the main research fields in regenerative medicine. Tissue engineering, which involves growing...

Im Focus: Light-induced superconductivity under high pressure

A team of scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg investigated optically-induced superconductivity in the alkali-doped fulleride K3C60under high external pressures. This study allowed, on one hand, to uniquely assess the nature of the transient state as a superconducting phase. In addition, it unveiled the possibility to induce superconductivity in K3C60 at temperatures far above the -170 degrees Celsius hypothesized previously, and rather all the way to room temperature. The paper by Cantaluppi et al has been published in Nature Physics.

Unlike ordinary metals, superconductors have the unique capability of transporting electrical currents without any loss. Nowadays, their technological...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Supersonic waves may help electronics beat the heat

18.05.2018 | Power and Electrical Engineering

Keeping a Close Eye on Ice Loss

18.05.2018 | Information Technology

CrowdWater: An App for Flood Research

18.05.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>