Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

First patients in US receive non-surgical device of sunken chest syndrome

22.11.2012
Surgeons at Children's Hospital of The King's Daughters (CHKD) have fitted a patient with a device that might eliminate the need for surgery in some patients with one of the world's most common chest deformities, pectus excavatum, often called sunken chest syndrome.

Known as the vacuum bell, it works much like devices in body shops that use sustained vacuum to pop out a dent.

"Years from now, we may look at the surgeries and realize that many of these conditions could have been corrected with vacuum devices," said Dr. Robert J. Obermeyer, who is leading the project at CHKD, the nation's top research center for chest-wall deformities and a training site for surgeons from around the world.

Pectus excavatum is the most common congenital deformity of the chest wall. Caused by an overgrowth of cartilage in the ribs and sternum, its defining feature is a depression, or indentation, in the middle of the chest.

Until the 1980s, the only correction was a radical surgery that involved removing cartilage and ribs. In the late 1980s, Dr. Donald Nuss, a CHKD pediatric surgeon, developed a minimally invasive technique that involved placing a concave bar into the chest then flipping it over so that it pushes the depression of the chest upward. The Nuss Procedure has since become the surgical gold standard.

Today, CHKD performs more pectus excavatum surgeries than any facility in the United States and remains a major training site for surgeons and a center for research on chest wall deformities.

But even the minimally invasive surgery results in an average hospital stay of five days. Pectus specialists have been exploring less invasive techniques; research is being conducted in San Francisco on implanting magnets in the chest wall that are attracted to a chest brace.

The vacuum bell procedure marks the first use by pectus specialists of a non-surgical device. "CHKD has always made efforts to minimize surgical intervention and I believe this could eliminate the need for surgery in some pectus excavatum patients," said Dr. Obermeyer, who has been instrumental in bringing the technology to the U.S.

The vacuum bell device looks something like a large, silicone doughnut, with a bulb attached to remove air pressure. It must be fitted to each patient and fit snugly on the chest. The bulb is used to create a vacuum inside the device.

The vacuum bell must be used about an hour a day and slowly pulls up the depressed area of cartilage. After three to six months of use, the depression in the chest reaches close to the maximum correction. The patient must continue to use the vacuum bell for about two years to make the correction permanent, similar to wearing a retainer after one's teeth are straightened.

In Europe, the concept of a vacuum device to correct sunken chest syndrome has been discussed for decades, but technology lagged behind. German engineer Eckart Klobe, who suffered pectus excavatum, developed hundreds of prototypes before developing a device that worked reliably.

The vacuum bell has been used in Europe for several years, and research suggests that the correction might be permanent. Dr. Obermeyer visited pectus specialists in Switzerland who used the vacuum bell, met with Klobe, toured the production facility where the devices are manufactured and helped expedite its categorization by the Food and Drug Administration as a class 1 medical device, which allows for sale and use in the United States.

While the vacuum bell is non-surgical, it should be used under the supervision of a pectus excavatum specialist because underlying cardiac conditions can make the device dangerous, Dr. Obermeyer cautioned.

CHKD this week performed the first two procedures by pectus experts in the United States and will monitor their progress as well as the long-term effectiveness of the innovative non-surgical procedure.

Greg Raver-Lampman | EurekAlert!
Further information:
http://www.chkd.org

More articles from Health and Medicine:

nachricht Millions through license revenues
27.04.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht New High-Performance Center Translational Medical Engineering
26.04.2017 | Fraunhofer ITEM

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>