Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

First patients receive lab-grown blood vessels from donor cells

28.06.2011
For the first time, blood vessels created in the lab from donor skin cells were successfully implanted in patients. Functioning blood vessels that aren't rejected by the immune system could be used to make durable shunts for kidney dialysis, and potentially to improve treatment for children with heart defects and adults needing coronary or other bypass graft surgery.

For the first time, human blood vessels grown in a laboratory from donor skin cells have been successfully implanted into patients, according to new research presented in the American Heart Association's Emerging Science Series webinar.

While more testing is needed, such "off-the-shelf" blood vessels could soon be used to improve the process and affordability of kidney dialysis.

"Our approach could allow hundreds of thousands of patients to be treated from one master cell line," said study lead author Todd N. McAllister, Ph.D., co-founder and chief executive officer of Cytograft Tissue Engineering Inc., of Novato, Calif.

The grafts also have the potential to be used in lower limb bypass to route blood around diseased arteries, to repair congenital heart defects in pediatric patients and to fix damaged arteries in soldiers, who might otherwise lose a limb, said McAllister.

The tissue-engineered blood vessels, produced from sheets of cultured skin cells rolled around temporary support structures, were used to create access shunts between arteries and veins in the arm for kidney dialysis in three patients. These shunts, which connect an artery to a vein, provide access to the blood for dialysis. The engineered vessels were about a foot long with a diameter of 4.8 millimeters.

At follow-up exams up to eight months after implantation, none of the patients had developed an immune reaction to the implants, and the vessels withstood the high pressure and frequent needle punctures required for dialysis. Shunts created from patients' own vessels or synthetic materials are notoriously prone to failure.

Investigators previously showed that using vessels individually created from a patient's own skin cells reduced the rate of shunt complications 2.4-fold over a 3-year period. The availability of off-the-shelf vessels could avoid the expense and months-long process involved in creating custom vessels for each patient, making the technique feasible for widespread use.

Besides addressing a costly and vexing problem in kidney dialysis, off-the-shelf blood vessels might someday be used instead of harvesting patients' own vessels for bypass surgery. A larger, randomized trial of the grafts is under way for kidney dialysis, and human trials have been initiated to assess the safety and effectiveness of these grafts for lower-limb bypass.

The study will be presented in the American Heart Association's Emerging Science Series, which will be held at 1 p.m. EDT/ 12 p.m. CDT. The series is a free online webinar presentation of cutting-edge science. The Emerging Science Series provides a new venue for presenting the latest cardiovascular scientific breakthroughs several times a year, when the discoveries are ready to be presented rather than waiting for a regularly scheduled meeting. Each study is handled in a peer-reviewed process similar to late-breaking clinical trials presented at AHA's annual Scientific Sessions.

The series will include the first presentation of data from clinical trials, basic science, key updates of previously presented trials and major bench-to-bedside breakthroughs. The webinar will be viewable from a computer or mobile phone and attendees can post questions electronically before or after the event. Presentations will be archived for on-demand viewing. For registration and information about the series visit: http://my.americanheart.org/professional/Sessions/AdditionalMeetings/EmergingScienceSeries/New-Emerging-Science-Series_UCM_424613_Article.jsp

Co-authors are Wojciech Wystrychowski, M.D.; Lech Cierpka, M.D.; Krzysztof Zagalski, M.D.; Sergio A. Garrido, M.D.; Samuel Radochonski, B.S.; Nathalie Dusserre, Ph.D.; and Nicholas L'Heureux, Ph.D.

Author disclosures are on the abstract. Cytograft funded the study.

Additional Resources:

Kidney Disease and Diabetes
What is Coronary Bypass Surgery?
Care and Treatment for Congenital Heart Defects
Statements and conclusions of study authors published in American Heart Association scientific meetings or presentations are solely those of the study authors and do not necessarily reflect the association's policy or position. The association makes no representation or guarantee as to their accuracy or reliability. The association receives funding primarily from individuals; foundations and corporations (including pharmaceutical, device manufacturers and other companies) also make donations and fund specific association programs and events. The association has strict policies to prevent these relationships from influencing the science content. Revenues from pharmaceutical and device corporations are available at www.americanheart.org/corporatefunding.

Carrie Thacker | EurekAlert!
Further information:
http://www.heart.org

Further reports about: Cytograft Science TV Tissue Engineering blood vessel heart defect skin cell

More articles from Health and Medicine:

nachricht Researchers release the brakes on the immune system
18.10.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht Norovirus evades immune system by hiding out in rare gut cells
12.10.2017 | University of Pennsylvania School of Medicine

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Terahertz spectroscopy goes nano

20.10.2017 | Information Technology

Strange but true: Turning a material upside down can sometimes make it softer

20.10.2017 | Materials Sciences

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>