Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

First patients receive lab-grown blood vessels from donor cells

28.06.2011
For the first time, blood vessels created in the lab from donor skin cells were successfully implanted in patients. Functioning blood vessels that aren't rejected by the immune system could be used to make durable shunts for kidney dialysis, and potentially to improve treatment for children with heart defects and adults needing coronary or other bypass graft surgery.

For the first time, human blood vessels grown in a laboratory from donor skin cells have been successfully implanted into patients, according to new research presented in the American Heart Association's Emerging Science Series webinar.

While more testing is needed, such "off-the-shelf" blood vessels could soon be used to improve the process and affordability of kidney dialysis.

"Our approach could allow hundreds of thousands of patients to be treated from one master cell line," said study lead author Todd N. McAllister, Ph.D., co-founder and chief executive officer of Cytograft Tissue Engineering Inc., of Novato, Calif.

The grafts also have the potential to be used in lower limb bypass to route blood around diseased arteries, to repair congenital heart defects in pediatric patients and to fix damaged arteries in soldiers, who might otherwise lose a limb, said McAllister.

The tissue-engineered blood vessels, produced from sheets of cultured skin cells rolled around temporary support structures, were used to create access shunts between arteries and veins in the arm for kidney dialysis in three patients. These shunts, which connect an artery to a vein, provide access to the blood for dialysis. The engineered vessels were about a foot long with a diameter of 4.8 millimeters.

At follow-up exams up to eight months after implantation, none of the patients had developed an immune reaction to the implants, and the vessels withstood the high pressure and frequent needle punctures required for dialysis. Shunts created from patients' own vessels or synthetic materials are notoriously prone to failure.

Investigators previously showed that using vessels individually created from a patient's own skin cells reduced the rate of shunt complications 2.4-fold over a 3-year period. The availability of off-the-shelf vessels could avoid the expense and months-long process involved in creating custom vessels for each patient, making the technique feasible for widespread use.

Besides addressing a costly and vexing problem in kidney dialysis, off-the-shelf blood vessels might someday be used instead of harvesting patients' own vessels for bypass surgery. A larger, randomized trial of the grafts is under way for kidney dialysis, and human trials have been initiated to assess the safety and effectiveness of these grafts for lower-limb bypass.

The study will be presented in the American Heart Association's Emerging Science Series, which will be held at 1 p.m. EDT/ 12 p.m. CDT. The series is a free online webinar presentation of cutting-edge science. The Emerging Science Series provides a new venue for presenting the latest cardiovascular scientific breakthroughs several times a year, when the discoveries are ready to be presented rather than waiting for a regularly scheduled meeting. Each study is handled in a peer-reviewed process similar to late-breaking clinical trials presented at AHA's annual Scientific Sessions.

The series will include the first presentation of data from clinical trials, basic science, key updates of previously presented trials and major bench-to-bedside breakthroughs. The webinar will be viewable from a computer or mobile phone and attendees can post questions electronically before or after the event. Presentations will be archived for on-demand viewing. For registration and information about the series visit: http://my.americanheart.org/professional/Sessions/AdditionalMeetings/EmergingScienceSeries/New-Emerging-Science-Series_UCM_424613_Article.jsp

Co-authors are Wojciech Wystrychowski, M.D.; Lech Cierpka, M.D.; Krzysztof Zagalski, M.D.; Sergio A. Garrido, M.D.; Samuel Radochonski, B.S.; Nathalie Dusserre, Ph.D.; and Nicholas L'Heureux, Ph.D.

Author disclosures are on the abstract. Cytograft funded the study.

Additional Resources:

Kidney Disease and Diabetes
What is Coronary Bypass Surgery?
Care and Treatment for Congenital Heart Defects
Statements and conclusions of study authors published in American Heart Association scientific meetings or presentations are solely those of the study authors and do not necessarily reflect the association's policy or position. The association makes no representation or guarantee as to their accuracy or reliability. The association receives funding primarily from individuals; foundations and corporations (including pharmaceutical, device manufacturers and other companies) also make donations and fund specific association programs and events. The association has strict policies to prevent these relationships from influencing the science content. Revenues from pharmaceutical and device corporations are available at www.americanheart.org/corporatefunding.

Carrie Thacker | EurekAlert!
Further information:
http://www.heart.org

Further reports about: Cytograft Science TV Tissue Engineering blood vessel heart defect skin cell

More articles from Health and Medicine:

nachricht Study suggests possible new target for treating and preventing Alzheimer's
02.12.2016 | Oregon Health & Science University

nachricht The first analysis of Ewing's sarcoma methyloma opens doors to new treatments
01.12.2016 | IDIBELL-Bellvitge Biomedical Research Institute

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>