Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Patients improve speech by watching 3-D tongue images

19.11.2015

Findings could be helpful for stroke patients

A new study done by University of Texas at Dallas researchers indicates that watching 3-D images of tongue movements can help individuals learn speech sounds.


Technology recently allowed researchers to switch from 2-D to the Opti-Speech technology, which shows the 3-D images of the tongue.

Credit: University of Texas at Dallas

According to Dr. William Katz, co-author of the study and professor at UT Dallas' Callier Center for Communication Disorders, the findings could be especially helpful for stroke patients seeking to improve their speech articulation.

"These results show that individuals can be taught consonant sounds in part by watching 3-D tongue images," said Katz, who teaches in the UT Dallas School of Behavioral and Brain Sciences. "But we also are seeking to use visual feedback to get at the underlying nature of apraxia and other related disorders."

The study, which appears in the journal Frontiers in Human Neuroscience, was small but showed that participants became more accurate in learning new sounds when they were exposed to visual feedback training.

Katz is one of the first researchers to suggest that the visual feedback on tongue movements could help stroke patients recover speech.

"People with apraxia of speech can have trouble with this process. They typically know what they want to say but have difficulty getting their speech plans to the muscle system, causing sounds to come out wrong," Katz said.

"My original inspiration was to show patients their tongues, which would clearly show where sounds should and should not be articulated," he said.

Technology recently allowed researchers to switch from 2-D technology to the Opti-Speech technology, which shows the 3-D images of the tongue. A previous UT Dallas research project determined that the Opti-Speech visual feedback system can reliably provide real-time feedback for speech learning.

Part of the new study looked at an effect called compensatory articulation -- when acoustics are rapidly shifted and subjects think they are making a certain sound with their mouths, but hear feedback that indicates they are making a different sound.

Katz said people will instantaneously shift away from the direction that the sound has pushed them. Then, if the shift is turned off, they'll overshoot.

"In our paradigm, we were able to visually shift people. Their tongues were making one sound but, little by little, we start shifting it," Katz said. "People changed their sounds to match the tongue image."

Katz said the research results highlight the importance of body visualization as part of rehabilitation therapy, saying there is much more work to be done.

"We want to determine why visual feedback affects speech," Katz said. "How much is due to compensating, versus mirroring (or entrainment)? Do some of the results come from people visually guiding their tongue to the right place, then having their sense of 'mouth feel' take over? What parts of the brain are likely involved?

"3-D imaging is opening an entirely new path for speech rehabilitation. Hopefully this work can be translated soon to help patients who desperately want to speak better."

###

The Opti-Speech study was co-authored by Sonya Mehta, a doctoral student in Communication Sciences and Disorders, and was funded by the UT Dallas Office of Sponsored Projects, the Callier Center Excellence in Education Fund, and a grant awarded by the National Institute on Deafness and Other Communication Disorders.

Phil Roth | EurekAlert!

More articles from Health and Medicine:

nachricht Millions through license revenues
27.04.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht New High-Performance Center Translational Medical Engineering
26.04.2017 | Fraunhofer ITEM

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>