Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Patients who use anti-depressants are more likely to suffer relapse, researcher finds

20.07.2011
Patients who use anti-depressants are much more likely to suffer relapses of major depression than those who use no medication at all, concludes a McMaster researcher.

In a paper that is likely to ignite new controversy in the hotly debated field of depression and medication, evolutionary psychologist Paul Andrews concludes that patients who have used anti-depressant medications can be nearly twice as susceptible to future episodes of major depression.

Andrews, an assistant professor in the Department of Psychology, Neuroscience & Behaviour, is the lead author of a new paper in the journal Frontiers of Psychology.

The meta-analysis suggests that people who have not been taking any medication are at a 25 per cent risk of relapse, compared to 42 per cent or higher for those who have taken and gone off an anti-depressant.

Andrews and his colleagues studied dozens of previously published studies to compare outcomes for patients who used anti-depressants compared to those who used placebos.

They analyzed research on subjects who started on medications and were switched to placebos, subjects who were administered placebos throughout their treatment, and subjects who continued to take medication throughout their course of treatment.

Andrews says anti-depressants interfere with the brain's natural self-regulation of serotonin and other neurotransmitters, and that the brain can overcorrect once medication is suspended, triggering new depression.

Though there are several forms of anti-depressants, all of them disturb the brain's natural regulatory mechanisms, which he compares to putting a weight on a spring. The brain, like the spring, pushes back against the weight. Going off antidepressant drugs is like removing the weight from the spring, leaving the person at increased risk of depression when the brain, like the compressed spring, shoots out before retracting to its resting state.

"We found that the more these drugs affect serotonin and other neurotransmitters in your brain -- and that's what they're supposed to do -- the greater your risk of relapse once you stop taking them," Andrews says. "All these drugs do reduce symptoms, probably to some degree, in the short-term. The trick is what happens in the long term. Our results suggest that when you try to go off the drugs, depression will bounce back. This can leave people stuck in a cycle where they need to keep taking anti-depressants to prevent a return of symptoms."

Andrews believes depression may actually be a natural and beneficial -- though painful -- state in which the brain is working to cope with stress.

"There's a lot of debate about whether or not depression is truly a disorder, as most clinicians and the majority of the psychiatric establishment believe, or whether it's an evolved adaptation that does something useful," he says.

Longitudinal studies cited in the paper show that more than 40 per cent of the population may experience major depression at some point in their lives.

Most depressive episodes are triggered by traumatic events such as the death of a loved one, the end of a relationship or the loss of a job. Andrews says the brain may blunt other functions such as appetite, sex drive, sleep and social connectivity, to focus its effort on coping with the traumatic event.

Just as the body uses fever to fight infection, he believes the brain may also be using depression to fight unusual stress.

Not every case is the same, and severe cases can reach the point where they are clearly not beneficial, he emphasizes.

McMaster University, one of four Canadian universities listed among the Top 100 universities in the world, is renowned for its innovation in both learning and discovery. It has a student population of 23,000, and more than 145,000 alumni in 128 countries.

For more information, please contact:

Wade Hemsworth
Media Relations Manager
McMaster University
905-525-9140 ext. 27988
hemswor@mcmaster.ca
Michelle Donovan
Media Relations Manager
McMaster University
905-525-9140 ext. 22869
donovam@mcmaster.ca

Wade Hemsworth | EurekAlert!
Further information:
http://www.mcmaster.ca

Further reports about: Psychology major depression risk of relapse traumatic event

More articles from Health and Medicine:

nachricht Millions through license revenues
27.04.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht New High-Performance Center Translational Medical Engineering
26.04.2017 | Fraunhofer ITEM

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>