Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Patients who use anti-depressants are more likely to suffer relapse, researcher finds

Patients who use anti-depressants are much more likely to suffer relapses of major depression than those who use no medication at all, concludes a McMaster researcher.

In a paper that is likely to ignite new controversy in the hotly debated field of depression and medication, evolutionary psychologist Paul Andrews concludes that patients who have used anti-depressant medications can be nearly twice as susceptible to future episodes of major depression.

Andrews, an assistant professor in the Department of Psychology, Neuroscience & Behaviour, is the lead author of a new paper in the journal Frontiers of Psychology.

The meta-analysis suggests that people who have not been taking any medication are at a 25 per cent risk of relapse, compared to 42 per cent or higher for those who have taken and gone off an anti-depressant.

Andrews and his colleagues studied dozens of previously published studies to compare outcomes for patients who used anti-depressants compared to those who used placebos.

They analyzed research on subjects who started on medications and were switched to placebos, subjects who were administered placebos throughout their treatment, and subjects who continued to take medication throughout their course of treatment.

Andrews says anti-depressants interfere with the brain's natural self-regulation of serotonin and other neurotransmitters, and that the brain can overcorrect once medication is suspended, triggering new depression.

Though there are several forms of anti-depressants, all of them disturb the brain's natural regulatory mechanisms, which he compares to putting a weight on a spring. The brain, like the spring, pushes back against the weight. Going off antidepressant drugs is like removing the weight from the spring, leaving the person at increased risk of depression when the brain, like the compressed spring, shoots out before retracting to its resting state.

"We found that the more these drugs affect serotonin and other neurotransmitters in your brain -- and that's what they're supposed to do -- the greater your risk of relapse once you stop taking them," Andrews says. "All these drugs do reduce symptoms, probably to some degree, in the short-term. The trick is what happens in the long term. Our results suggest that when you try to go off the drugs, depression will bounce back. This can leave people stuck in a cycle where they need to keep taking anti-depressants to prevent a return of symptoms."

Andrews believes depression may actually be a natural and beneficial -- though painful -- state in which the brain is working to cope with stress.

"There's a lot of debate about whether or not depression is truly a disorder, as most clinicians and the majority of the psychiatric establishment believe, or whether it's an evolved adaptation that does something useful," he says.

Longitudinal studies cited in the paper show that more than 40 per cent of the population may experience major depression at some point in their lives.

Most depressive episodes are triggered by traumatic events such as the death of a loved one, the end of a relationship or the loss of a job. Andrews says the brain may blunt other functions such as appetite, sex drive, sleep and social connectivity, to focus its effort on coping with the traumatic event.

Just as the body uses fever to fight infection, he believes the brain may also be using depression to fight unusual stress.

Not every case is the same, and severe cases can reach the point where they are clearly not beneficial, he emphasizes.

McMaster University, one of four Canadian universities listed among the Top 100 universities in the world, is renowned for its innovation in both learning and discovery. It has a student population of 23,000, and more than 145,000 alumni in 128 countries.

For more information, please contact:

Wade Hemsworth
Media Relations Manager
McMaster University
905-525-9140 ext. 27988
Michelle Donovan
Media Relations Manager
McMaster University
905-525-9140 ext. 22869

Wade Hemsworth | EurekAlert!
Further information:

Further reports about: Psychology major depression risk of relapse traumatic event

More articles from Health and Medicine:

nachricht Advanced analysis of brain structure shape may track progression to Alzheimer's disease
26.10.2016 | Massachusetts General Hospital

nachricht Indian roadside refuse fires produce toxic rainbow
26.10.2016 | Duke University

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel light sources made of 2D materials

Physicists from the University of Würzburg have designed a light source that emits photon pairs. Two-photon sources are particularly well suited for tap-proof data encryption. The experiment's key ingredients: a semiconductor crystal and some sticky tape.

So-called monolayers are at the heart of the research activities. These "super materials" (as the prestigious science magazine "Nature" puts it) have been...

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Activation of 2 genes linked to development of atherosclerosis

28.10.2016 | Life Sciences

How plants conquer the world

28.10.2016 | Life Sciences

Novel light sources made of 2D materials

28.10.2016 | Physics and Astronomy

More VideoLinks >>>