Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Patient Trial Of Personalized Two-Drug Therapy For Brain Tumors Launched

06.04.2010
Avastin and Tarceva, which target different tumor-growth pathways, are being studied by the Brain Tumor Trials Collaborative, which includes 13 centers across the nation.

Patients suffering from recently diagnosed malignant brain tumors called glioblastoma multiforme or a rare variant called gliosarcoma may be eligible to participate in a Phase II clinical trial at Cedars-Sinai Medical Center that combines two innovative drugs.

Cedars-Sinai’s Cochran Brain Tumor Center is the only site in California and one of only 13 in the nation offering this experimental therapy through the Brain Tumor Trials Collaborative (BTTC) based at M.D. Anderson Cancer Center in Houston.

Glioblastoma multiforme is a highly aggressive, treatment-resistant brain tumor. Even with standard therapies – surgery, chemotherapy and radiation – patient survival averages less than 15 months.

The two anticancer drugs, Avastin® (bevacizumab) and Tarceva® (erlotinib), work through different molecular mechanisms to attack brain tumors. Avastin inhibits vascular endothelial growth factor (VEGF), a protein that contributes to the formation of blood vessels that tumors need for growth. Tarceva is designed to prevent tumor growth by blocking a signal pathway that controls cell division by binding to a cancer cell membrane receptor called epidermal growth factor (EGFR).

Although single-agent targeted therapies have not produced significant improvements in treating glioblastomas, laboratory experiments and studies in animals suggest that a combination approach may have greater impact. This two-drug combination is also in clinical trials for the treatment of other cancers, including non-small cell lung cancer and renal cell carcinoma.

While all glioblastoma multiforme tumors share certain characteristics, they are not all genetically alike. This patient trial is specifically designed for those whose tumor cells have “unmethylated MGMT promoter.” This provides an especially strong study of the effects of the new two-drug approach because these tumors are resistant to the type of chemotherapy typically prescribed for patients with glioblastoma.

“Unmethylated MGMT promoter” means that a gene involved in repairing damaged tumor DNA is highly active in the tumor cells. When this gene, MGMT (O6-methylguanine-DNA methyltransferase), is functioning in cancer cells, it makes the tumor resistant to certain types of chemotherapy – including temozolamide, which is often used to treat glioblastoma – because it helps repair the damage the drug inflicts. On the other hand, if the gene is “silenced” (blocked) – through a process called methylation – the tumor will be more vulnerable to temozolomide.

The two-drug therapy will be administered after standard treatment with temozolomide and radiation therapy. Because radiation has been found to increase activation of certain molecular factors that the two drugs target, it is theorized that radiation therapy may stimulate a greater antitumor effect from the drugs.

Additional information on the clinical trial is available by calling 310-423-3062 or by visiting: http://www.cedars-sinai.edu/305.html.

The mission of the Brain Tumor Trials Collaborative “is to develop and perform hypothesis-based, state-of-the-art clinical trials in a collaborative and collegial environment, emphasizing innovation and meticulous attention to protocol compliance and date quality.” The group is led by researchers at M.D. Anderson Cancer Center in Houston and includes investigators at Cedars-Sinai and 11 other cancer research and treatment centers across the nation.

Other current members are: Baylor University Medical Center, Dallas; Dana Farber Cancer Center, Boston, M.D. Anderson Cancer Center – Orlando, Fla.; Medical University of South Carolina, Charleston; Memorial Sloan-Kettering Cancer Center, N.Y.; Methodist Hospital System, Houston; Northshore University Health System, Chicago; Northwestern University Feinberg School of Medicine, Chicago; Ohio State University A.G. James Cancer Hospital, Columbus; the University of Washington, Seattle; and the University of Texas Southwestern in Dallas.

Sandy Van | Cedars-Sinai News
Further information:
http://www.cedars-sinai.edu/305.html

More articles from Health and Medicine:

nachricht One gene closer to regenerative therapy for muscular disorders
01.06.2017 | Cincinnati Children's Hospital Medical Center

nachricht The gut microbiota plays a key role in treatment with classic diabetes medication
01.06.2017 | University of Gothenburg

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>