Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Particulate emissions from laser printers

03.12.2008
Do laser printers emit pathogenic toner particles into the air? Some people are convinced that they do. As a result, this topic is the subject of public controversy. Researchers have now investigated what particles the printers really do release into the air.

We regularly hear reports that laser printers release pathogenic toner dust into the ambient air. How much of it can we believe? What kind of particles do the printers really emit, and in what quantities? Researchers at the Fraunhofer Wilhelm Klauditz Institute WKI in Braunschweig are investigating this question in collaboration with colleagues from Queensland University of Technology QUT in Brisbane, Australia.

The results are surprising: Contrary to numerous reports, laser printers release hardly any particles of toner into the air. “But what some printers do emit are ultra-fine particles made of volatile organic-chemical substances,” says WKI head of department Prof. Dr. Tunga Salthammer. “One essential property of these ultra-fine particles is their volatility, which indicates that we are not looking at toner dust.”

So where do these ultra-fine particles come from? And how can their emergence be explained? To discover the answer, the scientists have developed a process that enables them to determine and compare the quantity, size and chemical composition of the emitted particles. Technical and financial support was provided by the printer and copier manufacturers in the German Association for Information Technology, Telecommunications and New Media (BITKOM). Depending on their dimensions, the printers are housed in a test chamber measuring one or 24 cubic meters. Particle analyzers count the particles and measure their size distribution. To discover the source, the researchers also examined modified printers that “print” without any paper or toner. “The amazing thing is that the ultra-fine particles are still produced even in this case. The cause is the fixing unit – a component that heats up as high as 220°C during the printing process in order to fix the toner particles on the paper,” explains WKI scientist Dr. Michael Wensing. The high temperatures cause volatile substances such as paraffins and silicon oils to evaporate, and these accumulate as ulta-fine particles.

The scientists from Braunschweig observed similar phenomena – the formation of ultra-fine particles of volatile organic substances when heated – during typical household activities such as cooking, baking, or making toast. Filters are available on the market to reduce these printer emissions. But are they any use? “Our investigations show that the various external filters on offer for printers operate in very different ways. As the ultra-fine particles are not emitted from a specific part of the printer, but also from the paper output, for instance, a filter can only have a limited effect.”

Prof. Dr. Tunga Salthammer | alfa
Further information:
http://www.wki.fraunhofer.de
http://www.fraunhofer.de/EN/press/pi/2008/12/ResearchNews122008Topic3.jsp
http://www.fraunhofer.de/EN/bigimg/2008/rn12fo3g.jsp

More articles from Health and Medicine:

nachricht Oxygen can wake up dormant bacteria for antibiotic attacks
08.12.2016 | Penn State

nachricht NTU scientists build new ultrasound device using 3-D printing technology
07.12.2016 | Nanyang Technological University

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Closing the carbon loop

08.12.2016 | Life Sciences

Applicability of dynamic facilitation theory to binary hard disk systems

08.12.2016 | Physics and Astronomy

Scientists track chemical and structural evolution of catalytic nanoparticles in 3-D

08.12.2016 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>