Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Particulate emissions from laser printers

03.12.2008
Do laser printers emit pathogenic toner particles into the air? Some people are convinced that they do. As a result, this topic is the subject of public controversy. Researchers have now investigated what particles the printers really do release into the air.

We regularly hear reports that laser printers release pathogenic toner dust into the ambient air. How much of it can we believe? What kind of particles do the printers really emit, and in what quantities? Researchers at the Fraunhofer Wilhelm Klauditz Institute WKI in Braunschweig are investigating this question in collaboration with colleagues from Queensland University of Technology QUT in Brisbane, Australia.

The results are surprising: Contrary to numerous reports, laser printers release hardly any particles of toner into the air. “But what some printers do emit are ultra-fine particles made of volatile organic-chemical substances,” says WKI head of department Prof. Dr. Tunga Salthammer. “One essential property of these ultra-fine particles is their volatility, which indicates that we are not looking at toner dust.”

So where do these ultra-fine particles come from? And how can their emergence be explained? To discover the answer, the scientists have developed a process that enables them to determine and compare the quantity, size and chemical composition of the emitted particles. Technical and financial support was provided by the printer and copier manufacturers in the German Association for Information Technology, Telecommunications and New Media (BITKOM). Depending on their dimensions, the printers are housed in a test chamber measuring one or 24 cubic meters. Particle analyzers count the particles and measure their size distribution. To discover the source, the researchers also examined modified printers that “print” without any paper or toner. “The amazing thing is that the ultra-fine particles are still produced even in this case. The cause is the fixing unit – a component that heats up as high as 220°C during the printing process in order to fix the toner particles on the paper,” explains WKI scientist Dr. Michael Wensing. The high temperatures cause volatile substances such as paraffins and silicon oils to evaporate, and these accumulate as ulta-fine particles.

The scientists from Braunschweig observed similar phenomena – the formation of ultra-fine particles of volatile organic substances when heated – during typical household activities such as cooking, baking, or making toast. Filters are available on the market to reduce these printer emissions. But are they any use? “Our investigations show that the various external filters on offer for printers operate in very different ways. As the ultra-fine particles are not emitted from a specific part of the printer, but also from the paper output, for instance, a filter can only have a limited effect.”

Prof. Dr. Tunga Salthammer | alfa
Further information:
http://www.wki.fraunhofer.de
http://www.fraunhofer.de/EN/press/pi/2008/12/ResearchNews122008Topic3.jsp
http://www.fraunhofer.de/EN/bigimg/2008/rn12fo3g.jsp

More articles from Health and Medicine:

nachricht Finnish research group discovers a new immune system regulator
23.02.2018 | University of Turku

nachricht Minimising risks of transplants
22.02.2018 | Friedrich-Alexander-Universität Erlangen-Nürnberg

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Basque researchers turn light upside down

23.02.2018 | Physics and Astronomy

Finnish research group discovers a new immune system regulator

23.02.2018 | Health and Medicine

Attoseconds break into atomic interior

23.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>