Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

PARP inhibitor shows activity in pancreatic, prostate cancers among patients carrying BRCA mutations

16.05.2013
Results of clinical trial led by Penn Medicine reveal new potential therapy for advanced cancers

In the largest clinical trial to date to examine the efficacy of PARP inhibitor therapy in BRCA 1/2 carriers with diseases other than breast and ovarian cancer, the oral drug olaparib was found to be effective against advanced pancreatic and prostate cancers. Results of the study, led by researchers from the Perelman School of Medicine at the University of Pennsylvania and Sheba Medical Center in Tel Hashomer, Israel, will be presented during the American Society of Clinical Oncology's annual meeting in Chicago in early June (Abstract #11024).

The multi-center research team, including investigators from across the United States, Europe, Australia and Israel, studied nearly 300 patients with inherited BRCA1 and BRCA2 mutations who had advanced cancers that were still growing despite standard treatments. Study participants, comprised of patients with breast, ovarian, pancreatic, prostate and other cancers, all took olaparib.

"Our results show that the BRCA1 or BRCA2 genes inherited by some patients can actually be the Achilles heel in a novel, personalized approach to treat any type of cancer the patient has," says the study's senior author, Susan Domchek, MD, director of Penn's Basser Research Center for BRCA, the nation's only center devoted solely to research for prevention and treatment associated with BRCA mutations. "As many as 3 percent of patients with pancreatic and prostate cancer have an inherited mutation in BRCA1 or BRCA2. Our findings have implications for many patients beyond those with breast and ovarian cancer."

Five of 23 pancreatic cancer patients (22 percent) and four of eight prostate cancer patients (50 percent) responded to the therapy, as measured by objective clinical criteria. Importantly, the therapy also appeared to halt disease progression even in those whose tumors did not shrink: an additional eight (35 percent) of the pancreatic cancer patients studied had stable disease at 8 weeks after beginning olaparib, as did two (25 percent) of the prostate patients. Overall survival at one year was 41 percent for the pancreatic cancer patients, and 50 percent for the prostate cancer patients.

For patients with breast and ovarian cancer, the study confirmed the previously reported activity of olaparib, although tumors treated in this study were much more advanced than in prior studies. For example, in 193 patients with ovarian cancer in whom cisplatin was no longer effective for controlling advanced disease, 31 percent had partial or complete tumor regression on olaparib, and 64 percent were alive at one year. Among 62 patients with metastatic breast cancer patients who had already received at least three chemotherapy regimens, 13 percent responded to new therapy and 45 percent of patients were alive at one year.

The authors found that treatment with olaparib is very well-tolerated. The most commonly reported side effects were mild to moderate fatigue and nausea (each experienced by 59 percent of patients), and transient episodes of vomiting (37 percent). Seventeen percent of patients experienced anemia, and four percent of patients suffered side effects that led to discontinuation of therapy.

As of January 2013, 33 patients remained on the study.

"This study underscores a new paradigm in cancer therapy. We can better fashion treatments for our patients based on a personalized assessment of the genetic factors underlying the cancer," Domchek says. "PARP inhibitors such as olaparib represent the most promising new treatment for individuals suffering from cancer based on inherited BRCA1 and BRCA2 gene mutations."

The results will be presented by lead author Bella Kaufman, MD, from Sheba Medical Center in Tel Hashomer, Israel, in the Tumor Biology poster session from 8 a.m. to noon on Monday, June 3, 2013 in S102 McCormick Place.

Penn Medicine is one of the world's leading academic medical centers, dedicated to the related missions of medical education, biomedical research, and excellence in patient care. Penn Medicine consists of the Raymond and Ruth Perelman School of Medicine at the University of Pennsylvania (founded in 1765 as the nation's first medical school) and the University of Pennsylvania Health System, which together form a $4.3 billion enterprise.

The Perelman School of Medicine has been ranked among the top five medical schools in the United States for the past 16 years, according to U.S. News & World Report's survey of research-oriented medical schools. The School is consistently among the nation's top recipients of funding from the National Institutes of Health, with $398 million awarded in the 2012 fiscal year.

The University of Pennsylvania Health System's patient care facilities include: The Hospital of the University of Pennsylvania -- recognized as one of the nation's top "Honor Roll" hospitals by U.S. News & World Report; Penn Presbyterian Medical Center; and Pennsylvania Hospital -- the nation's first hospital, founded in 1751. Penn Medicine also includes additional patient care facilities and services throughout the Philadelphia region.

Penn Medicine is committed to improving lives and health through a variety of community-based programs and activities. In fiscal year 2012, Penn Medicine provided $827 million to benefit our community.

Holly Auer | EurekAlert!
Further information:
http://www.uphs.upenn.edu

More articles from Health and Medicine:

nachricht Routing gene therapy directly into the brain
07.12.2017 | Boston Children's Hospital

nachricht New Hope for Cancer Therapies: Targeted Monitoring may help Improve Tumor Treatment
01.12.2017 | Berliner Institut für Gesundheitsforschung / Berlin Institute of Health (BIH)

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

Im Focus: Virtual Reality for Bacteria

An interdisciplinary group of researchers interfaced individual bacteria with a computer to build a hybrid bio-digital circuit - Study published in Nature Communications

Scientists at the Institute of Science and Technology Austria (IST Austria) have managed to control the behavior of individual bacteria by connecting them to a...

Im Focus: A space-time sensor for light-matter interactions

Physicists in the Laboratory for Attosecond Physics (run jointly by LMU Munich and the Max Planck Institute for Quantum Optics) have developed an attosecond electron microscope that allows them to visualize the dispersion of light in time and space, and observe the motions of electrons in atoms.

The most basic of all physical interactions in nature is that between light and matter. This interaction takes place in attosecond times (i.e. billionths of a...

Im Focus: A transistor of graphene nanoribbons

Transistors based on carbon nanostructures: what sounds like a futuristic dream could be reality in just a few years' time. An international research team working with Empa has now succeeded in producing nanotransistors from graphene ribbons that are only a few atoms wide, as reported in the current issue of the trade journal "Nature Communications."

Graphene ribbons that are only a few atoms wide, so-called graphene nanoribbons, have special electrical properties that make them promising candidates for the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

Blockchain is becoming more important in the energy market

05.12.2017 | Event News

 
Latest News

Making fuel out of thick air

08.12.2017 | Life Sciences

Rules for superconductivity mirrored in 'excitonic insulator'

08.12.2017 | Information Technology

Smartphone case offers blood glucose monitoring on the go

08.12.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>