Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

PARP inhibitor shows activity in pancreatic, prostate cancers among patients carrying BRCA mutations

16.05.2013
Results of clinical trial led by Penn Medicine reveal new potential therapy for advanced cancers

In the largest clinical trial to date to examine the efficacy of PARP inhibitor therapy in BRCA 1/2 carriers with diseases other than breast and ovarian cancer, the oral drug olaparib was found to be effective against advanced pancreatic and prostate cancers. Results of the study, led by researchers from the Perelman School of Medicine at the University of Pennsylvania and Sheba Medical Center in Tel Hashomer, Israel, will be presented during the American Society of Clinical Oncology's annual meeting in Chicago in early June (Abstract #11024).

The multi-center research team, including investigators from across the United States, Europe, Australia and Israel, studied nearly 300 patients with inherited BRCA1 and BRCA2 mutations who had advanced cancers that were still growing despite standard treatments. Study participants, comprised of patients with breast, ovarian, pancreatic, prostate and other cancers, all took olaparib.

"Our results show that the BRCA1 or BRCA2 genes inherited by some patients can actually be the Achilles heel in a novel, personalized approach to treat any type of cancer the patient has," says the study's senior author, Susan Domchek, MD, director of Penn's Basser Research Center for BRCA, the nation's only center devoted solely to research for prevention and treatment associated with BRCA mutations. "As many as 3 percent of patients with pancreatic and prostate cancer have an inherited mutation in BRCA1 or BRCA2. Our findings have implications for many patients beyond those with breast and ovarian cancer."

Five of 23 pancreatic cancer patients (22 percent) and four of eight prostate cancer patients (50 percent) responded to the therapy, as measured by objective clinical criteria. Importantly, the therapy also appeared to halt disease progression even in those whose tumors did not shrink: an additional eight (35 percent) of the pancreatic cancer patients studied had stable disease at 8 weeks after beginning olaparib, as did two (25 percent) of the prostate patients. Overall survival at one year was 41 percent for the pancreatic cancer patients, and 50 percent for the prostate cancer patients.

For patients with breast and ovarian cancer, the study confirmed the previously reported activity of olaparib, although tumors treated in this study were much more advanced than in prior studies. For example, in 193 patients with ovarian cancer in whom cisplatin was no longer effective for controlling advanced disease, 31 percent had partial or complete tumor regression on olaparib, and 64 percent were alive at one year. Among 62 patients with metastatic breast cancer patients who had already received at least three chemotherapy regimens, 13 percent responded to new therapy and 45 percent of patients were alive at one year.

The authors found that treatment with olaparib is very well-tolerated. The most commonly reported side effects were mild to moderate fatigue and nausea (each experienced by 59 percent of patients), and transient episodes of vomiting (37 percent). Seventeen percent of patients experienced anemia, and four percent of patients suffered side effects that led to discontinuation of therapy.

As of January 2013, 33 patients remained on the study.

"This study underscores a new paradigm in cancer therapy. We can better fashion treatments for our patients based on a personalized assessment of the genetic factors underlying the cancer," Domchek says. "PARP inhibitors such as olaparib represent the most promising new treatment for individuals suffering from cancer based on inherited BRCA1 and BRCA2 gene mutations."

The results will be presented by lead author Bella Kaufman, MD, from Sheba Medical Center in Tel Hashomer, Israel, in the Tumor Biology poster session from 8 a.m. to noon on Monday, June 3, 2013 in S102 McCormick Place.

Penn Medicine is one of the world's leading academic medical centers, dedicated to the related missions of medical education, biomedical research, and excellence in patient care. Penn Medicine consists of the Raymond and Ruth Perelman School of Medicine at the University of Pennsylvania (founded in 1765 as the nation's first medical school) and the University of Pennsylvania Health System, which together form a $4.3 billion enterprise.

The Perelman School of Medicine has been ranked among the top five medical schools in the United States for the past 16 years, according to U.S. News & World Report's survey of research-oriented medical schools. The School is consistently among the nation's top recipients of funding from the National Institutes of Health, with $398 million awarded in the 2012 fiscal year.

The University of Pennsylvania Health System's patient care facilities include: The Hospital of the University of Pennsylvania -- recognized as one of the nation's top "Honor Roll" hospitals by U.S. News & World Report; Penn Presbyterian Medical Center; and Pennsylvania Hospital -- the nation's first hospital, founded in 1751. Penn Medicine also includes additional patient care facilities and services throughout the Philadelphia region.

Penn Medicine is committed to improving lives and health through a variety of community-based programs and activities. In fiscal year 2012, Penn Medicine provided $827 million to benefit our community.

Holly Auer | EurekAlert!
Further information:
http://www.uphs.upenn.edu

More articles from Health and Medicine:

nachricht 3D images of cancer cells in the body: Medical physicists from Halle present new method
16.05.2018 | Martin-Luther-Universität Halle-Wittenberg

nachricht Better equipped in the fight against lung cancer
16.05.2018 | Friedrich-Alexander-Universität Erlangen-Nürnberg

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

Im Focus: Computer-Designed Customized Regenerative Heart Valves

Cardiovascular tissue engineering aims to treat heart disease with prostheses that grow and regenerate. Now, researchers from the University of Zurich, the Technical University Eindhoven and the Charité Berlin have successfully implanted regenerative heart valves, designed with the aid of computer simulations, into sheep for the first time.

Producing living tissue or organs based on human cells is one of the main research fields in regenerative medicine. Tissue engineering, which involves growing...

Im Focus: Light-induced superconductivity under high pressure

A team of scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg investigated optically-induced superconductivity in the alkali-doped fulleride K3C60under high external pressures. This study allowed, on one hand, to uniquely assess the nature of the transient state as a superconducting phase. In addition, it unveiled the possibility to induce superconductivity in K3C60 at temperatures far above the -170 degrees Celsius hypothesized previously, and rather all the way to room temperature. The paper by Cantaluppi et al has been published in Nature Physics.

Unlike ordinary metals, superconductors have the unique capability of transporting electrical currents without any loss. Nowadays, their technological...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Supersonic waves may help electronics beat the heat

18.05.2018 | Power and Electrical Engineering

Keeping a Close Eye on Ice Loss

18.05.2018 | Information Technology

CrowdWater: An App for Flood Research

18.05.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>