Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Parkinson's breakthough could slow disease progression

Scientists, including Lyrica inventor, create new class of potential therapeutics

In an early-stage breakthrough, a team of Northwestern University scientists has developed a new family of compounds that could slow the progression of Parkinson's disease.

Parkinson's, the second most common neurodegenerative disease, is caused by the death of dopamine neurons, resulting in tremors, rigidity and difficulty moving. Current treatments target the symptoms but do not slow the progression of the disease.

The new compounds were developed by Richard B. Silverman, the John Evans Professor of Chemistry at the Weinberg College of Arts and Sciences and inventor of the molecule that became the well-known drug Lyrica, and D. James Surmeier, chair of physiology at Northwestern University Feinberg School of Medicine. Their research was published Oct. 23 in the journal Nature Communications.

The compounds work by slamming the door on an unwelcome and destructive guest -- calcium. The compounds target and shut a relatively rare membrane protein that allows calcium to flood into dopamine neurons. Surmeier's previously published research showed that calcium entry through this protein stresses dopamine neurons, potentially leading to premature aging and death. He also identified the precise protein involved -- the Cav1.3 channel.

"These are the first compounds to selectively target this channel," Surmeier said. "By shutting down the channel, we should be able to slow the progression of the disease or significantly reduce the risk that anyone would get Parkinson's disease if they take this drug early enough."

"We've developed a molecule that could be an entirely new mechanism for arresting Parkinson's disease, rather than just treating the symptoms," Silverman said.

The compounds work in a similar way to the drug isradipine, for which a Phase 2 national clinical trial with Parkinson's patients –- led by Northwestern Medicine neurologist Tanya Simuni, M.D. -- was recently completed. But because isradipine interacts with other channels found in the walls of blood vessels, it can't be used in a high enough concentration to be highly effective for Parkinson's disease. (Simuni is the Arthur C. Nielsen Professor of Neurology at the Feinberg School and a physician at Northwestern Memorial Hospital.)

The challenge for Silverman was to design new compounds that specifically target this rare Cav1.3 channel, not those that are abundant in blood vessels. He and colleagues first used high-throughput screening to test 60,000 existing compounds, but none did the trick.

"We didn't want to give up," Silverman said. He then tested some compounds he had developed in his lab for other neurodegenerative diseases. After Silverman identified one that had promise, Soosung Kang, a postdoctoral associate in Silverman's lab, spent nine months refining the molecules until they were effective at shutting only the Cav1.3 channel.

In Surmeier's lab, the drug developed by Silverman and Kang was tested by graduate student Gary Cooper in regions of a mouse brain that contained dopamine neurons. The drug did precisely what it was designed to do, without any obvious side effects.

"The drug relieved the stress on the cells," Surmeier said.

For the next step, the Northwestern team has to improve the pharmacology of the compounds to make them suitable for human use, test them on animals and move to a Phase 1 clinical trial.

"We have a long way to go before we are ready to give this drug, or a reasonable facsimile, to humans, but we are very encouraged," Surmeier said.

The research was supported by the Michael J. Fox Foundation and the RJG Foundation.


Marla Paul | EurekAlert!
Further information:

More articles from Health and Medicine:

nachricht Inflammation Triggers Unsustainable Immune Response to Chronic Viral Infection
24.10.2016 | Universität Basel

nachricht Resolving the mystery of preeclampsia
21.10.2016 | Universitätsklinikum Magdeburg

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Oasis of life in the ice-covered central Arctic

24.10.2016 | Earth Sciences

‘Farming’ bacteria to boost growth in the oceans

24.10.2016 | Life Sciences

Light-driven atomic rotations excite magnetic waves

24.10.2016 | Physics and Astronomy

More VideoLinks >>>