Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Parents favor genetic testing for melanoma in their children

22.12.2010
The vast majority of parents who tested positive for a genetic mutation that increases the risk of melanoma (the most serious form of skin cancer) support genetic testing of their children or grandchildren. Results of the two-year study at Huntsman Cancer Institute (HCI) at the University of Utah (U of U) appear in the December issue of the journal Genetics in Medicine. The data could lead to the establishment of formal, evidence-based guidelines for genetic testing of people younger than 18 years.

The study, led by Sancy A. Leachman, M.D., Ph.D., of the University of Utah Department of Dermatology and Lisa G. Aspinwall, Ph.D., of the University of Utah Department of Psychology, both HCI investigators, surveyed 61 adults tested for the CDKN2A/p16 mutation that increases the risk of melanoma. Overall, 86.9 percent expressed support for melanoma genetic testing of minors. They cited the importance of risk awareness and the likelihood of improved prevention and screening behavior as reasons for their support. Participants were surveyed when they received their genetic test results and again two years later; their attitudes remained stable over that period.

"Developing guidelines for genetic testing of minors is complex and controversial," says Leachman. "But knowledge of their genetic status could help them make appropriate lifestyle decisions. For example, a child who tested positive might decide not to choose a summer job that demands lots of sun exposure, such as lifeguard."

Generally, genetic testing of children is recommended only when a clear benefit to the child will result. For example, testing minors is generally supported in families who have the syndrome called familial adenomatous polyposis (FAP) which causes polyp development in adolescence and confers a near-100 percent risk of colon cancer. Children found to have the genetic mutation that causes FAP are recommended to have early and frequent screening and sometimes even removal of the colon to avoid cancer development.

However, for other genetic conditions, such as the BRCA1/2 gene mutations that can lead to breast and ovarian cancer later in life, testing for minors is not recommended because there are no known prevention strategies that could benefit these individuals during childhood. In fact, a similar study, led by Jeffrey Botkin, M.D., HCI director of bioethics, was conducted at HCI with people who had genetic testing for a BRCA1 mutation. It showed significantly little support for testing of children; only 17 percent supported testing for their own children.

"Genetic testing for melanoma occupies a middle ground," says Wendy Kohlmann, M.S., C.G.C., an HCI genetic counselor and study co-author, "because with or without the mutation, cancer screening and prevention measures remain the same. However, children and adolescents who know they have an increased risk of the disease have many opportunities to make lifestyle changes and choices that potentially reduce their melanoma risk." Kohlmann says children with this knowledge may be more consistent in practices such as increased skin cancer screening and reduced exposure to harmful ultraviolet rays through wearing protective clothing, using sunscreen, and avoiding tanning beds.

According to the study, ethical arguments related to the child's autonomy and the balance of potential psychological harms and benefits also have been raised concerning genetic testing for minors. However, these concerns were raised infrequently by participants in the study. While more than one-third of those surveyed indicated they would consider a child's maturity level in deciding about genetic testing, only two respondents opposed testing all children because of the possibility of producing worry and stress. In other words, most participant responses seemed not to correspond to frequently raised ethical concerns.

"People can use this knowledge to proactively manage their familial cancer risk when they have the most options to do so," says Aspinwall. Other study authors include Jennifer Taber, M.S., and Reed Dow, also from the U of U Department of Psychology.

The study was funded by a grant from the U of U Office of the Vice President for Research, and an HCI Cancer Control and Population Sciences Pilot Project Award. Additional support was also received from the Huntsman Cancer Foundation and the Tom C. Mathews Jr. Familial Melanoma Research Clinic, among others.

The mission of Huntsman Cancer Institute (HCI) at The University of Utah is to understand cancer from its beginnings, to use that knowledge in the creation and improvement of cancer treatments, to relieve the suffering of cancer patients, and to provide education about cancer risk, prevention, and care. HCI is a National Cancer Institute-Designated Cancer Center, which means that it meets the highest national standards for cancer care and research and receives support for its scientific endeavors. HCI is also a member of the National Comprehensive Cancer Network (NCCN), a not-for-profit alliance of the world's leading cancer centers that is dedicated to improving the quality and effectiveness of care provided to patients with cancer. For more information about HCI, please visit www.huntsmancancer.org.

Linda Aagard | EurekAlert!
Further information:
http://www.huntsmancancer.org

Further reports about: Cancer HCI cancer screening gene mutation genetic testing

More articles from Health and Medicine:

nachricht Finnish research group discovers a new immune system regulator
23.02.2018 | University of Turku

nachricht Minimising risks of transplants
22.02.2018 | Friedrich-Alexander-Universität Erlangen-Nürnberg

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Basque researchers turn light upside down

23.02.2018 | Physics and Astronomy

Finnish research group discovers a new immune system regulator

23.02.2018 | Health and Medicine

Attoseconds break into atomic interior

23.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>