Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Parallel brainstem circuit discovery suggests new path in Parkinson's research

20.05.2010
Chicago and Montreal researchers studying the lowly lamprey eel have identified an overlooked nervous system pathway running parallel to known brainstem locomotor command circuitry in vertebrates such as birds, fishes and mammals.

The finding is reported in Nature Neuroscience, online May 16, and highlighted in the magazine's "news and views" section.

Simon Alford, University of Illinois at Chicago professor of biological sciences and the article's corresponding author, said the role of a neurotransmitter associated with this parallel pathway may also suggest new research directions for treating Parkinson's disease.

Alford, along with his former graduate student and lead author Roy Smetana, now a University of Pittsburgh resident in psychiatry, worked with Université de Montréal and Université de Québec à Montréal neurobiologist Réjean Dubuc and his post-doctoral researcher Laurent Juvin in trying to sort out how the neurotransmitter analog muscarine modifies sensory information going to the brain.

Their work determined that muscarine stimulated neural activity, leading to locomotion in the laboratory lampreys.

The group focused its attention on a collection of brainstem neurons that tell the spinal cord to generate motor output that enables walking and other locomotion.

"We started looking at this group of neurons, which in the lamprey are conveniently very large, so they're easy to plant electrodes and record from," said Alford. "We discovered the muscarinic excitation was not working on these cells, but on a previously unknown group of cells within the brainstem."

What's more, these newly discovered brainstem neurons showed what Alford called a "very odd response" to the muscarine.

"Instead of just turning on -- like a synapse turns on a neuron and makes it fire -- when you put muscarine on these cells, they turn on and stay on" for a minute or longer which he said for a neurological reaction can be a very long time.

The researchers discovered the actual brain neurotransmitter that activates muscarine receptors -- another chemical, acetylcholine -- sends a signal to these newly discovered brainstem neurons, switching them on for the lengthy minute or so durations.

Alford said the finding opens up new insights into animal locomotion.

"It's a system for turning on your locomotor system and making you walk or run in a very coordinated, straight-line fashion sustaining locomotion for a considerable time," he said. "This simply was not known to exist before we discovered it."

The role of the neurotransmitter acetylcholine may ultimately suggest new Parkinson's disease treatments. While a key Parkinson's symptom is tremor, an advanced stage symptom is the inability to start a movement, such as walking. Symptoms associated with Parkinson's can be helped by reducing acetylcholine-mediated neurotransmission in the brain, but little work has focused on brainstem muscarine receptors in this disease.

"This may be a backdoor finding into a secondary effect of Parkinson's disease that's not well studied because most research emphasis has been on dopamine and the basal ganglia, a different neurotransmitter and region of the brain," Alford said.

Major funding for the research came from the National Institute of Neurological Disorders and Stroke, and the Canadian Institutes of Health Research.

Paul Francuch | EurekAlert!
Further information:
http://www.uic.edu

More articles from Health and Medicine:

nachricht How cancer metastasis happens: Researchers reveal a key mechanism
19.01.2018 | Weill Cornell Medicine

nachricht Researchers identify new way to unmask melanoma cells to the immune system
17.01.2018 | Duke University Medical Center

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Optical Nanoscope Allows Imaging of Quantum Dots

Physicists have developed a technique based on optical microscopy that can be used to create images of atoms on the nanoscale. In particular, the new method allows the imaging of quantum dots in a semiconductor chip. Together with colleagues from the University of Bochum, scientists from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute reported the findings in the journal Nature Photonics.

Microscopes allow us to see structures that are otherwise invisible to the human eye. However, conventional optical microscopes cannot be used to image...

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Rutgers scientists discover 'Legos of life'

23.01.2018 | Life Sciences

Seabed mining could destroy ecosystems

23.01.2018 | Earth Sciences

Transportable laser

23.01.2018 | Physics and Astronomy

VideoLinks Science & Research
Overview of more VideoLinks >>>