Paradoxical protein might prevent cancer

Molecular signal pathways that stimulate the division of stem cells are generally the same as those active in tumour growth. This limits the possibility of treating cancer as the drugs that kill cancer cells also often adversely affect the body's healthy cells, particularly stem cells.

A new study from Karolinska Institutet, conducted in collaboration with an international team of scientists led by Professor Jonas Frisén, is now focusing on an exception that can make it possible to treat a form of colon cancer.

The results concern a group of signal proteins called EphB receptors. These proteins stimulate the division of stem cells in the intestine and can contribute to the formation of adenoma (polyps), which are known to carry a risk of cancer. Paradoxically, these same proteins also prevent the adenoma from growing unchecked and becoming cancerous.

The new results show that EphB controls two separate signal pathways, one of which stimulates cell division and the other that curbs the cells' ability to become cancerous. Using this knowledge, the scientists have identified a drug substance called imatinib, which can inhibit the first signal pathway without affecting the other, protective, pathway.

“Imatinib or a similar substance could possibly be used for preventing the development of cancer in people who are in the risk zone for colon cancer instead of intestinal resection,” says Maria Genander, one of the researchers involved in the study.

Imatinib has so far proved to inhibit cell division in intestinal tumour cells in vitro and in mice. The substance is a component of the drug Glivec, which is used, amongst other things, in the treatment of certain forms of leukaemia. Whether it can also be used against adenoma and colon cancer in humans remains to be seen. The company that manufactures the drug did not fund the study.

Publication:
Maria Genander, Michael M. Halford, Nan-Jie Xu, Malin Eriksson, Zuoren Yu, Zhaozhu Qiu, Anna Martling, Gedas Greicius, Sonal Thakar, Timothy Catchpole, Michael J. Chumley, Sofia Zdunek, Chenguang Wang, Torbjörn Holm, Stephen P. Goff, Sven Pettersson, Richard G. Pestell, Mark Henkemeyer & Jonas Frisén
Dissociation of EphB2 Signaling Pathways Mediating Progenitor Cell Proliferation and Tumor Suppression

Cell, print issue, 13 Nov 2009

Media Contact

Katarina Sternudd EurekAlert!

More Information:

http://www.ki.se

All latest news from the category: Health and Medicine

This subject area encompasses research and studies in the field of human medicine.

Among the wide-ranging list of topics covered here are anesthesiology, anatomy, surgery, human genetics, hygiene and environmental medicine, internal medicine, neurology, pharmacology, physiology, urology and dental medicine.

Back to home

Comments (0)

Write a comment

Newest articles

Superradiant atoms could push the boundaries of how precisely time can be measured

Superradiant atoms can help us measure time more precisely than ever. In a new study, researchers from the University of Copenhagen present a new method for measuring the time interval,…

Ion thermoelectric conversion devices for near room temperature

The electrode sheet of the thermoelectric device consists of ionic hydrogel, which is sandwiched between the electrodes to form, and the Prussian blue on the electrode undergoes a redox reaction…

Zap Energy achieves 37-million-degree temperatures in a compact device

New publication reports record electron temperatures for a small-scale, sheared-flow-stabilized Z-pinch fusion device. In the nine decades since humans first produced fusion reactions, only a few fusion technologies have demonstrated…

Partners & Sponsors