Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New paper examines poison resistance in snakes around the world

20.03.2012
A new study by University of Notre Dame biologist Michael Pfrender and a team of researchers from the University of Nevada-Reno, Utah State University and the University of Virginia suggests that snakes from different regions of the world have evolved a similar, remarkable resistance to a deadly neurotoxin.

The finding, which appeared in the Proceedings of the National Academy of Sciences, greatly increases scientists' understanding of the genetic basis of adaptation and is a model for understanding the limits to adaptation and the degree to which evolutionary responses are predictable.

Pfrender and colleagues found that species of snakes in North, Central and South America and Asia that are able to feed on amphibians that secrete a deadly neurotoxic poison, tetrodotoxin or TTX. These snakes have similar mutations in a key sodium-channel gene that makes them highly resistant to TTX. These mutations prevent TTX from blocking the sodium channels in muscle, which would otherwise immobilize the snakes by paralyzing nervous and muscle tissue.

"The key finding is that adaptive evolution is constrained by the functional properties of the genes involved in these evolutionary responses," Pfrender said. "While there are many possible mutations that can improve fitness, in this case resistance to the neurotoxin TTX, many of these mutations have a cost because they change the normal function of the genes. So, when we look at multiple species that have independently adapted to TTX, we see a very similar, and limited, set of mutations involved. The story is one of repeated evolutionary change that occurs through a limited set of changes at the molecular level."

The study stems from Pfrender's interest in understanding how organisms deal with environmental change through adaptive evolution.

"We would like to know what the underlying genetic mechanisms are, and what the limits are to these adaptive responses," he said. "Ultimately, we would like to develop a predictive framework to gauge when natural populations will be able to evolve rapidly enough to persist in a changing environment and when the environmental change is too fast or too strong, leading to local extinction."

An understanding of how organisms deal with environmental change is relevant to the major themes of Notre Dame's Environmental Change Initiative and to the Eck Institute for Global Health, which examines disease resistance coupled with human health.

"Many organisms are exposed to toxic chemicals in their environment and this system is a model for understanding how they cope with this challenge through evolutionary change," Pfrender said. "A good example of the application of this knowledge is when we are trying to understand how parasites acquire drug resistance. How do they do it and what are the limits to this response? Can we create more effective drug strategies that capitalize on these functional constraints making it more difficult for parasites to evolve resistance?"

Pfrender and the Utah State researchers plan to study more snake species and to expand their research to a number of other species, including insects that prey on the toxic eggs of salamanders. They also are examining other genes closely related to the sodium channel genes that are the focus of the PNAS study to expand their understanding of how adaptation occurs.

Michael Pfrender | EurekAlert!
Further information:
http://www.nd.edu

More articles from Health and Medicine:

nachricht Organ-on-a-chip mimics heart's biomechanical properties
23.02.2017 | Vanderbilt University

nachricht Researchers identify cause of hereditary skeletal muscle disorder
22.02.2017 | Klinikum der Universität München

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Safe glide at total engine failure with ELA-inside

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded after a glide flight with an Airbus A320 in ditching on the Hudson River. All 155 people on board were saved.

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded...

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Safe glide at total engine failure with ELA-inside

27.02.2017 | Information Technology

Fraunhofer IFAM expands its R&D work on Coatings for protection against corrosion and marine growth

27.02.2017 | Materials Sciences

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>