Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Pandemic flu can infect cells deep in the lungs

14.09.2009
Pandemic swine flu can infect cells deeper in the lungs than seasonal flu can, according to a new study published today in Nature Biotechnology.

The researchers, from Imperial College London, say this may explain why people infected with the pandemic strain of swine-origin H1N1 influenza are more likely to suffer more severe symptoms than those infected with the seasonal strain of H1N1.

They also suggest that scientists should monitor the current pandemic H1N1 influenza virus for changes in the way it infects cells that could make infections more serious.

Influenza viruses infect cells by attaching to bead-like molecules on the outside of the cell, called receptors. Different viruses attach to different receptors, and if a virus cannot find its specific receptors, it cannot get into the cell. Once inside the cell, the virus uses the cell's machinery to make thousands more viruses, which then burst out of the cell and infect neighbouring ones, establishing an infection.

Seasonal influenza viruses attach to receptors found on cells in the nose, throat and upper airway, enabling them to infect a person's respiratory tract. Today's research, which was funded by the Wellcome Trust, the Medical Research Council and the Engineering and Physical Sciences Research Council, shows that pandemic H1N1 swine flu can also attach to a receptor found on cells deep inside the lungs, which can result in a more severe lung infection.

The pandemic influenza virus's ability to stick to the additional receptors may explain why the virus replicates and spreads between cells more quickly: if a flu virus can bind to more than one type of receptor, it can attach itself to a larger area of the respiratory tract, infecting more cells and causing a more serious infection.

Professor Ten Feizi, a corresponding author of today's paper from the Division of Medicine at Imperial College London, said: "Most people infected with swine-origin flu in the current pandemic have experienced relatively mild symptoms. However, some people have had more severe lung infections, which can be worse than those caused by seasonal flu. Our new research shows how the virus does this - by attaching to receptors mostly found on cells deep in the lungs. This is something seasonal flu cannot do."

The researchers found that pandemic H1N1 influenza bound more weakly to the receptors in the lungs than to those in the upper respiratory tract. This is why most people infected with the virus have experienced mild symptoms. However, the researchers are concerned that the virus could mutate to bind more strongly to these receptors.

"If the flu virus mutates in the future, it may attach to the receptors deep inside the lungs more strongly, and this could mean that more people would experience serious symptoms. We think scientists should be on the lookout for these kinds of changes in the virus so we can try to find ways of minimising the impact of such changes," added Professor Feizi.

The researchers compared the way seasonal and pandemic H1N1 flu viruses infect cells by identifying which receptors each virus binds to. To do this, the researchers used a glass surface with 86 different receptors attached to it, called a carbohydrate microarray. When viruses were added to the glass surface, they stuck to their specific receptors and the corresponding areas on the plate 'lit up'. This meant the researchers could see which receptors the different viruses attached to.

Pandemic H1H1 influenza could bind strongly to receptors called á2-6, which are found in the nose, throat and upper airway, and it could also attach more weakly to á2-3 receptors, which are found on cells deeper inside the lungs. However, seasonal H1N1 influenza could only attach to á2-6.

"Receptor binding determines how well a virus spreads between cells and causes an infection," said Professor Feizi. "Our new study adds to our understanding of how swine-origin influenza H1N1 virus is behaving in the current pandemic, and shows us changes we need to look out for."

Lucy Goodchild | EurekAlert!
Further information:
http://www.imperial.ac.uk

More articles from Health and Medicine:

nachricht World first: Massive thrombosis removed during early pregnancy
20.07.2017 | Universitätsspital Bern

nachricht Therapy of preterm birth in sight?
19.07.2017 | Universitätsspital Bern

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

Im Focus: On the way to a biological alternative

A bacterial enzyme enables reactions that open up alternatives to key industrial chemical processes

The research team of Prof. Dr. Oliver Einsle at the University of Freiburg's Institute of Biochemistry has long been exploring the functioning of nitrogenase....

Im Focus: The 1 trillion tonne iceberg

Larsen C Ice Shelf rift finally breaks through

A one trillion tonne iceberg - one of the biggest ever recorded -- has calved away from the Larsen C Ice Shelf in Antarctica, after a rift in the ice,...

Im Focus: Laser-cooled ions contribute to better understanding of friction

Physics supports biology: Researchers from PTB have developed a model system to investigate friction phenomena with atomic precision

Friction: what you want from car brakes, otherwise rather a nuisance. In any case, it is useful to know as precisely as possible how friction phenomena arise –...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

NASA looks to solar eclipse to help understand Earth's energy system

21.07.2017 | Earth Sciences

Stanford researchers develop a new type of soft, growing robot

21.07.2017 | Power and Electrical Engineering

Vortex photons from electrons in circular motion

21.07.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>