Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Pancreatic Cancers Use Fructose, Common in the Western Diet, to Fuel Their Growth

05.08.2010
Pancreatic cancers use the sugar fructose, very common in the Western diet, to activate a key cellular pathway that drives cell division, helping the cancer to grow more quickly, a study by researchers at UCLA’s Jonsson Comprehensive Cancer Center has found.

Although it’s widely known that cancers use glucose, a simple sugar, to fuel their growth, this is the first time a link has been shown between fructose and cancer proliferation, said Dr. Anthony Heaney, an associate professor of medicine and neurosurgery, a Jonsson Cancer Center researcher and senior author of the study.

“The bottom line is the modern diet contains a lot of refined sugar including fructose and it’s a hidden danger implicated in a lot of modern diseases, such as obesity, diabetes and fatty liver,” said Heaney, who also serves as director of the Pituitary Tumor and Neuroendocrine Program at UCLA. “In this study, we show that cancers can use fructose just as readily as glucose to fuel their growth.”

The study appeared in the Aug. 1 issue of the peer-reviewed journal Cancer Research.

The source of fructose in the Western diet is high fructose corn syrup (HFCS), a corn-based sweetener that has been on the market since about 1970. HFCS accounts for more than 40 percent of the caloric sweeteners added to foods and beverages, and it is the sole sweetener used in American soft drinks.

Between 1970 and 1990, the consumption of HFCS in the U.S. has increased over 1,000 percent, according to an article in the April 2004 issue of the American Journal of Clinical Nutrition. Food companies use HFCS - a mixture of fructose and glucose - because it’s inexpensive, easy to transport and keeps foods moist. And because it is so sweet, it’s cost effective for companies to use small quantities of HCFS in place of more expensive sweeteners or flavorings.

In his study, Heaney and his team took pancreatic tumors from patients and cultured and grew the malignant cells in Petri dishes. They then added glucose to one set of cells and fructose to another. Using mass spectrometry, they were able to follow the carbon-labeled sugars in the cells to determine what exactly they were being used for and how.

Heaney found that the pancreatic cancer cells could easily distinguish between glucose and fructose even though they are very similar structurally, and contrary to conventional wisdom, the cancer cells metabolized the sugars in very different ways. In the case of fructose, the pancreatic cancer cells used the sugar in the transketolase-driven non-oxidative pentose phosphate pathway to generate nucleic acids, the building blocks of RNA and DNA, which the cancer cells need to divide and proliferate.

“Traditionally, glucose and fructose have been considered as interchangeable monosaccharide substrates that are similarly metabolized, and little attention has been given to sugars other than glucose,” the study states. “However, fructose intake has increased dramatically in recent decades and cellular uptake of glucose and fructose uses distinct transporters … These findings show that cancer cells can readily metabolize fructose to increase proliferation. They have major significance for cancer patients, given dietary refined fructose consumption.”

As in anti-smoking campaigns, a federal effort should be launched to reduce refined fructose intake, Heaney said.

“I think this paper has a lot of public health implications,” Heaney said. “Hopefully, at the federal level there will be some effort to step back on the amount of HFCS in our diets.”

Heaney said that while this study was done in pancreatic cancer, these finding may not be unique to that cancer type.

Going forward, Heaney and his team are exploring whether it’s possible to block the uptake of fructose in the cancer cells with a small molecule, taking away one of the fuels they need to grow. The work is being done in cell lines and in mice, Heaney said.

The study was funded by the National Institutes of Health, the Hirschberg Foundation and the Jonsson Cancer Center.

UCLA's Jonsson Comprehensive Cancer Center has more than 240 researchers and clinicians engaged in disease research, prevention, detection, control, treatment and education. One of the nation's largest comprehensive cancer centers, the Jonsson center is dedicated to promoting research and translating basic science into leading-edge clinical studies. In July 2010, the Jonsson Cancer Center was named among the top 10 cancer centers nationwide by U.S. News & World Report, a ranking it has held for 10 of the last 11 years. For more information on the Jonsson Cancer Center, visit our website at http://www.cancer.ucla.edu.

Kim Irwin | Newswise Science News
Further information:
http://www.mednet.ucla.edu

More articles from Health and Medicine:

nachricht Millions through license revenues
27.04.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht New High-Performance Center Translational Medical Engineering
26.04.2017 | Fraunhofer ITEM

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>