Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Pancreatic Cancers Use Fructose, Common in the Western Diet, to Fuel Their Growth

05.08.2010
Pancreatic cancers use the sugar fructose, very common in the Western diet, to activate a key cellular pathway that drives cell division, helping the cancer to grow more quickly, a study by researchers at UCLA’s Jonsson Comprehensive Cancer Center has found.

Although it’s widely known that cancers use glucose, a simple sugar, to fuel their growth, this is the first time a link has been shown between fructose and cancer proliferation, said Dr. Anthony Heaney, an associate professor of medicine and neurosurgery, a Jonsson Cancer Center researcher and senior author of the study.

“The bottom line is the modern diet contains a lot of refined sugar including fructose and it’s a hidden danger implicated in a lot of modern diseases, such as obesity, diabetes and fatty liver,” said Heaney, who also serves as director of the Pituitary Tumor and Neuroendocrine Program at UCLA. “In this study, we show that cancers can use fructose just as readily as glucose to fuel their growth.”

The study appeared in the Aug. 1 issue of the peer-reviewed journal Cancer Research.

The source of fructose in the Western diet is high fructose corn syrup (HFCS), a corn-based sweetener that has been on the market since about 1970. HFCS accounts for more than 40 percent of the caloric sweeteners added to foods and beverages, and it is the sole sweetener used in American soft drinks.

Between 1970 and 1990, the consumption of HFCS in the U.S. has increased over 1,000 percent, according to an article in the April 2004 issue of the American Journal of Clinical Nutrition. Food companies use HFCS - a mixture of fructose and glucose - because it’s inexpensive, easy to transport and keeps foods moist. And because it is so sweet, it’s cost effective for companies to use small quantities of HCFS in place of more expensive sweeteners or flavorings.

In his study, Heaney and his team took pancreatic tumors from patients and cultured and grew the malignant cells in Petri dishes. They then added glucose to one set of cells and fructose to another. Using mass spectrometry, they were able to follow the carbon-labeled sugars in the cells to determine what exactly they were being used for and how.

Heaney found that the pancreatic cancer cells could easily distinguish between glucose and fructose even though they are very similar structurally, and contrary to conventional wisdom, the cancer cells metabolized the sugars in very different ways. In the case of fructose, the pancreatic cancer cells used the sugar in the transketolase-driven non-oxidative pentose phosphate pathway to generate nucleic acids, the building blocks of RNA and DNA, which the cancer cells need to divide and proliferate.

“Traditionally, glucose and fructose have been considered as interchangeable monosaccharide substrates that are similarly metabolized, and little attention has been given to sugars other than glucose,” the study states. “However, fructose intake has increased dramatically in recent decades and cellular uptake of glucose and fructose uses distinct transporters … These findings show that cancer cells can readily metabolize fructose to increase proliferation. They have major significance for cancer patients, given dietary refined fructose consumption.”

As in anti-smoking campaigns, a federal effort should be launched to reduce refined fructose intake, Heaney said.

“I think this paper has a lot of public health implications,” Heaney said. “Hopefully, at the federal level there will be some effort to step back on the amount of HFCS in our diets.”

Heaney said that while this study was done in pancreatic cancer, these finding may not be unique to that cancer type.

Going forward, Heaney and his team are exploring whether it’s possible to block the uptake of fructose in the cancer cells with a small molecule, taking away one of the fuels they need to grow. The work is being done in cell lines and in mice, Heaney said.

The study was funded by the National Institutes of Health, the Hirschberg Foundation and the Jonsson Cancer Center.

UCLA's Jonsson Comprehensive Cancer Center has more than 240 researchers and clinicians engaged in disease research, prevention, detection, control, treatment and education. One of the nation's largest comprehensive cancer centers, the Jonsson center is dedicated to promoting research and translating basic science into leading-edge clinical studies. In July 2010, the Jonsson Cancer Center was named among the top 10 cancer centers nationwide by U.S. News & World Report, a ranking it has held for 10 of the last 11 years. For more information on the Jonsson Cancer Center, visit our website at http://www.cancer.ucla.edu.

Kim Irwin | Newswise Science News
Further information:
http://www.mednet.ucla.edu

More articles from Health and Medicine:

nachricht Tracking movement of immune cells identifies key first steps in inflammatory arthritis
23.01.2017 | Massachusetts General Hospital

nachricht Team discovers how bacteria exploit a chink in the body's armor
20.01.2017 | University of Illinois at Urbana-Champaign

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Quantum optical sensor for the first time tested in space – with a laser system from Berlin

For the first time ever, a cloud of ultra-cold atoms has been successfully created in space on board of a sounding rocket. The MAIUS mission demonstrates that quantum optical sensors can be operated even in harsh environments like space – a prerequi-site for finding answers to the most challenging questions of fundamental physics and an important innovation driver for everyday applications.

According to Albert Einstein's Equivalence Principle, all bodies are accelerated at the same rate by the Earth's gravity, regardless of their properties. This...

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Tracking movement of immune cells identifies key first steps in inflammatory arthritis

23.01.2017 | Health and Medicine

Electrocatalysis can advance green transition

23.01.2017 | Physics and Astronomy

New technology for mass-production of complex molded composite components

23.01.2017 | Process Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>