Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Paired drugs kill precancerous colon polyps, spare normal tissue

29.03.2010
Combination could provide chemoprevention via short-term therapy, long-term effect

A two-drug combination destroys precancerous colon polyps with no effect on normal tissue, opening a new potential avenue for chemoprevention of colon cancer, a team of scientists at The University of Texas M. D. Anderson Cancer Center reports in the advance online edition of the journal Nature.

The regimen, tested so far in mouse models and on human colon cancer tissue in the lab, appears to address a problem with chemopreventive drugs - they must be taken continuously long term to be effective, exposing patients to possible side effects, said senior author Xiangwei Wu, Ph.D., associate professor in M. D. Anderson's Department of Head and Neck Surgery.

"This combination can be given short term and periodically to provide a long-term effect, which would be a new approach to chemoprevention," Wu said.

The team found that a combination of Vitamin A acetate (RAc) and TRAIL, short for tumor necrosis factor-related apoptosis-inducing ligand, kills precancerous polyps and inhibits tumor growth in mice that have deficiencies in a tumor-suppressor gene. That gene, adenomatous polyposis coli (APC) and its downstream signaling molecules, are mutated or deficient in 80 percent of all human colon cancers, Wu said.

Ineffective separately, powerful together

Early experiments with APC-deficient mice showed that the two drugs combined or separately did not harm normal colon epithelial cells. Separately, they showed no effect on premalignant polyps called adenomas.

RAc and TRAIL together killed adenoma cells, causing programmed cell suicide know as apoptosis. RAc, researchers found, sensitizes polyp cells to TRAIL.

The scientists painstakingly tracked the molecular cascade caused by APC deficiencies, and found that insufficient APC sensitizes cells to TRAIL and RAc by suppressing a protein that blocks TRAIL.

Reductions in polyps, improved survival

APC-deficient mice were treated with 15 cycles of the RAc/TRAIL combination over six weeks. Others received either RAc or TRAIL and a control group received nothing. One month later, control mice and those treated with one of the drugs averaged between 35 and 42 polyps, while those receiving the combination averaged 10.

To test the combination's potential as short-term therapy, APC-deficient mice were treated with two cycles of the combination in one week, causing a 69 percent polyp reduction two weeks later. A 10-fold increase in dose left treated mice with only 10 percent of the polyps found in controls.

A longer term test of relative survival using five treatments over four months improved survival from 186 days for controls to beyond 213 days for treated mice, with five of seven treated mice living more than eight months.

Cell death in human colon polyps

Next, the researchers treated biopsy samples of normal tissue and tumor regions from patients with familial adenomatous polyposis - an inherited condition that inevitably leads to colon cancer if the colon is not removed. Treatment of normal tissue caused little cell death, while 57 percent of polyp cells were killed via apoptosis.

Targeted therapies today aim at blocking some aspect of the tumor that drives its growth, Wu said, whereas RAc and TRAIL together kill precancerous polyps outright. Since APC is deficient or mutated in other types of cancer, the combination therapy could become a more general drug.

Before human clinical trials can be considered, Wu said, the team will conduct additional research to understand potential side effects and also will try to develop an injectable version of the combination, which is administered intravenously now.

One of the genes activated by the APC-deficient pathway, ß-catenin, is involved with stem cell self-renewal and maintenance in adult tissues. The team conducted a series of experiments and determined that RAc/TRAIL does not affect stem cells in mice.

Today, concerns about cardiovascular side effects limit chemopreventive agents for colon cancer mainly to high-risk patients, Wu said. "We hope this combination, if it proves to lack toxicities, might be available as a chemopreventive agent to a broader, general population."

Wu's research was funded by a National Institutes of Health grant, M. D. Anderson institutional funds, and a grant from the Alliance of Cardiovascular Researchers.

Co-authors with Wu are co-first authors Ling Zhang, Ph.D., and Xiaoyang Ren, M.D., Shaoyi Huang, Zhengming Xu, and Xian-Feng Wen, Ph.D., all of M. D. Anderson's Department of Head and Neck Surgery; Eckhard Alt, M.D., and Xiaowen Bai, Ph.D., of the Department of Molecular Pathology; Patrick Lynch, M.D., of the Department of Gastroenterology, Hepatology and Nutrition. Wu also is affiliated with the Department of Molecular and Cellular Oncology. Co-author

About M. D. Anderson

The University of Texas M. D. Anderson Cancer Center in Houston ranks as one of the world's most respected centers focused on cancer patient care, research, education and prevention. M. D. Anderson is one of only 40 comprehensive cancer centers designated by the National Cancer Institute. For six of the past eight years, including 2009, M. D. Anderson has ranked No. 1 in cancer care in "America's Best Hospitals," a survey published annually in U.S. News & World Report.

Scott Merville | EurekAlert!
Further information:
http://www.mdanderson.org

More articles from Health and Medicine:

nachricht Improving memory with magnets
28.03.2017 | McGill University

nachricht Graphene-based neural probes probe brain activity in high resolution
28.03.2017 | Graphene Flagship

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Transport of molecular motors into cilia

28.03.2017 | Life Sciences

A novel hybrid UAV that may change the way people operate drones

28.03.2017 | Information Technology

NASA spacecraft investigate clues in radiation belts

28.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>