Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Paired drugs kill precancerous colon polyps, spare normal tissue

Combination could provide chemoprevention via short-term therapy, long-term effect

A two-drug combination destroys precancerous colon polyps with no effect on normal tissue, opening a new potential avenue for chemoprevention of colon cancer, a team of scientists at The University of Texas M. D. Anderson Cancer Center reports in the advance online edition of the journal Nature.

The regimen, tested so far in mouse models and on human colon cancer tissue in the lab, appears to address a problem with chemopreventive drugs - they must be taken continuously long term to be effective, exposing patients to possible side effects, said senior author Xiangwei Wu, Ph.D., associate professor in M. D. Anderson's Department of Head and Neck Surgery.

"This combination can be given short term and periodically to provide a long-term effect, which would be a new approach to chemoprevention," Wu said.

The team found that a combination of Vitamin A acetate (RAc) and TRAIL, short for tumor necrosis factor-related apoptosis-inducing ligand, kills precancerous polyps and inhibits tumor growth in mice that have deficiencies in a tumor-suppressor gene. That gene, adenomatous polyposis coli (APC) and its downstream signaling molecules, are mutated or deficient in 80 percent of all human colon cancers, Wu said.

Ineffective separately, powerful together

Early experiments with APC-deficient mice showed that the two drugs combined or separately did not harm normal colon epithelial cells. Separately, they showed no effect on premalignant polyps called adenomas.

RAc and TRAIL together killed adenoma cells, causing programmed cell suicide know as apoptosis. RAc, researchers found, sensitizes polyp cells to TRAIL.

The scientists painstakingly tracked the molecular cascade caused by APC deficiencies, and found that insufficient APC sensitizes cells to TRAIL and RAc by suppressing a protein that blocks TRAIL.

Reductions in polyps, improved survival

APC-deficient mice were treated with 15 cycles of the RAc/TRAIL combination over six weeks. Others received either RAc or TRAIL and a control group received nothing. One month later, control mice and those treated with one of the drugs averaged between 35 and 42 polyps, while those receiving the combination averaged 10.

To test the combination's potential as short-term therapy, APC-deficient mice were treated with two cycles of the combination in one week, causing a 69 percent polyp reduction two weeks later. A 10-fold increase in dose left treated mice with only 10 percent of the polyps found in controls.

A longer term test of relative survival using five treatments over four months improved survival from 186 days for controls to beyond 213 days for treated mice, with five of seven treated mice living more than eight months.

Cell death in human colon polyps

Next, the researchers treated biopsy samples of normal tissue and tumor regions from patients with familial adenomatous polyposis - an inherited condition that inevitably leads to colon cancer if the colon is not removed. Treatment of normal tissue caused little cell death, while 57 percent of polyp cells were killed via apoptosis.

Targeted therapies today aim at blocking some aspect of the tumor that drives its growth, Wu said, whereas RAc and TRAIL together kill precancerous polyps outright. Since APC is deficient or mutated in other types of cancer, the combination therapy could become a more general drug.

Before human clinical trials can be considered, Wu said, the team will conduct additional research to understand potential side effects and also will try to develop an injectable version of the combination, which is administered intravenously now.

One of the genes activated by the APC-deficient pathway, ß-catenin, is involved with stem cell self-renewal and maintenance in adult tissues. The team conducted a series of experiments and determined that RAc/TRAIL does not affect stem cells in mice.

Today, concerns about cardiovascular side effects limit chemopreventive agents for colon cancer mainly to high-risk patients, Wu said. "We hope this combination, if it proves to lack toxicities, might be available as a chemopreventive agent to a broader, general population."

Wu's research was funded by a National Institutes of Health grant, M. D. Anderson institutional funds, and a grant from the Alliance of Cardiovascular Researchers.

Co-authors with Wu are co-first authors Ling Zhang, Ph.D., and Xiaoyang Ren, M.D., Shaoyi Huang, Zhengming Xu, and Xian-Feng Wen, Ph.D., all of M. D. Anderson's Department of Head and Neck Surgery; Eckhard Alt, M.D., and Xiaowen Bai, Ph.D., of the Department of Molecular Pathology; Patrick Lynch, M.D., of the Department of Gastroenterology, Hepatology and Nutrition. Wu also is affiliated with the Department of Molecular and Cellular Oncology. Co-author

About M. D. Anderson

The University of Texas M. D. Anderson Cancer Center in Houston ranks as one of the world's most respected centers focused on cancer patient care, research, education and prevention. M. D. Anderson is one of only 40 comprehensive cancer centers designated by the National Cancer Institute. For six of the past eight years, including 2009, M. D. Anderson has ranked No. 1 in cancer care in "America's Best Hospitals," a survey published annually in U.S. News & World Report.

Scott Merville | EurekAlert!
Further information:

More articles from Health and Medicine:

nachricht Scientists develop tiny tooth-mounted sensors that can track what you eat
22.03.2018 | Tufts University

nachricht NIH scientists describe potential antibody treatment for multidrug-resistant K. pneumoniae
14.03.2018 | NIH/National Institute of Allergy and Infectious Diseases

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Space observation with radar to secure Germany's space infrastructure

Satellites in near-Earth orbit are at risk due to the steady increase in space debris. But their mission in the areas of telecommunications, navigation or weather forecasts is essential for society. Fraunhofer FHR therefore develops radar-based systems which allow the detection, tracking and cataloging of even the smallest particles of debris. Satellite operators who have access to our data are in a better position to plan evasive maneuvers and prevent destructive collisions. From April, 25-29 2018, Fraunhofer FHR and its partners will exhibit the complementary radar systems TIRA and GESTRA as well as the latest radar techniques for space observation across three stands at the ILA Berlin.

The "traffic situation" in space is very tense: the Earth is currently being orbited not only by countless satellites but also by a large volume of space...

Im Focus: Researchers Discover New Anti-Cancer Protein

An international team of researchers has discovered a new anti-cancer protein. The protein, called LHPP, prevents the uncontrolled proliferation of cancer cells in the liver. The researchers led by Prof. Michael N. Hall from the Biozentrum, University of Basel, report in “Nature” that LHPP can also serve as a biomarker for the diagnosis and prognosis of liver cancer.

The incidence of liver cancer, also known as hepatocellular carcinoma, is steadily increasing. In the last twenty years, the number of cases has almost doubled...

Im Focus: Researchers at Fraunhofer monitor re-entry of Chinese space station Tiangong-1

In just a few weeks from now, the Chinese space station Tiangong-1 will re-enter the Earth's atmosphere where it will to a large extent burn up. It is possible that some debris will reach the Earth's surface. Tiangong-1 is orbiting the Earth uncontrolled at a speed of approx. 29,000 km/h.Currently the prognosis relating to the time of impact currently lies within a window of several days. The scientists at Fraunhofer FHR have already been monitoring Tiangong-1 for a number of weeks with their TIRA system, one of the most powerful space observation radars in the world, with a view to supporting the German Space Situational Awareness Center and the ESA with their re-entry forecasts.

Following the loss of radio contact with Tiangong-1 in 2016 and due to the low orbital height, it is now inevitable that the Chinese space station will...

Im Focus: Alliance „OLED Licht Forum“ – Key partner for OLED lighting solutions

Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP, provider of research and development services for OLED lighting solutions, announces the founding of the “OLED Licht Forum” and presents latest OLED design and lighting solutions during light+building, from March 18th – 23rd, 2018 in Frankfurt a.M./Germany, at booth no. F91 in Hall 4.0.

They are united in their passion for OLED (organic light emitting diodes) lighting with all of its unique facets and application possibilities. Thus experts in...

Im Focus: Mars' oceans formed early, possibly aided by massive volcanic eruptions

Oceans formed before Tharsis and evolved together, shaping climate history of Mars

A new scenario seeking to explain how Mars' putative oceans came and went over the last 4 billion years implies that the oceans formed several hundred million...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

New solar solutions for sustainable buildings and cities

23.03.2018 | Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

Latest News

Don't Give the Slightest Chance to Toxic Elements in Medicinal Products

23.03.2018 | Life Sciences

Sensitive grip

23.03.2018 | Materials Sciences

No compromises: Combining the benefits of 3D printing and casting

23.03.2018 | Process Engineering

Science & Research
Overview of more VideoLinks >>>