Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Painkiller Abuse Can Predispose Adolescents to Lifelong Addiction

11.09.2008
Adolescent mice exposed to the painkiller Oxycontin can sustain lifelong and permanent changes in their reward system – changes that increase the drug’s euphoric properties and make such adolescents more vulnerable to the drug’s effects later in adulthood.

No child aspires to a lifetime of addiction. But their brains might. In new research to appear online in the journal Neuropsychopharmacology this week, Rockefeller University researchers reveal that adolescent brains exposed to the painkiller Oxycontin can sustain lifelong and permanent changes in their reward system – changes that increase the drug’s euphoric properties and make such adolescents more vulnerable to the drug’s effects later in adulthood.

The research, led by Mary Jeanne Kreek, head of the Laboratory of the Biology of Addictive Diseases, is the first to directly compare levels of the chemical dopamine in adolescent and adult mice in response to increasing doses of the painkiller. Kreek, first author Yong Zhang, a research associate in the lab, and their colleagues found that adolescent mice self-administered Oxycontin less frequently than adults, suggesting that adolescents were more sensitive to its rewarding effects. These adolescent mice, when re-exposed to a low dose of the drug as adults, also had significantly higher dopamine levels in the brain’s reward center compared to adult mice newly exposed to the drug.

“Together, these results suggest that adolescents who abuse prescription pain killers may be tuning their brain to a lifelong battle with opiate addiction if they re-exposed themselves to the drug as adults,” says Kreek. ”The neurobiological changes seem to sensitize the brain to the drug’s powerfully rewarding properties.”

... more about:
»Abuse »Drug »Oxycontin »Painkiller »Predispose »dopamine

During adolescence, the brain undergoes marked changes. For example, the brain's reward pathway increases production of dopamine receptors until mid-adolescence and then either production declines or numbers of receptors decline. By abusing Oxycontin during this developmental period, adolescents may inadvertently trick the brain to keep more of those receptors than it really needs. If these receptors stick around and the adolescent is re-exposed to the drug as an adult, the rush of euphoria may be more addictive than the feeling experienced by adults who had never before tried the drug.

In contrast to illicit drug use among adolescents, the problem of nonmedical use of painkillers such as Oxycontin and Vicodin has escalated in recent years, with the onset of abuse occurring most frequently in adolescents and young adults. Recent studies by the National Institute on Drug Abuse and the Substance Abuse and Mental Health Services Administration have shown that 11 percent of persons 12 years old or older have used a prescription opiate illicitly. “Despite the early use of these drugs in young people, little is known about how they differentially affect adolescent brains undergoing developmental change,” says Kreek. “These findings gives us a new perspective from which to develop better strategies for prevention and therapy.”

This research was supported by the National Institute on Drug Abuse.

Thania Benios | Newswise Science News
Further information:
http://www.rockefeller.edu

Further reports about: Abuse Drug Oxycontin Painkiller Predispose dopamine

More articles from Health and Medicine:

nachricht 'Exciting' discovery on path to develop new type of vaccine to treat global viruses
18.09.2017 | University of Southampton

nachricht A new approach to high insulin levels
18.09.2017 | Schweizerischer Nationalfonds SNF

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

Im Focus: Fast, convenient & standardized: New lab innovation for automated tissue engineering & drug

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems Holding GmbH about commercial use of a multi-well tissue plate for automated and reliable tissue engineering & drug testing.

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems...

Im Focus: Silencing bacteria

HZI researchers pave the way for new agents that render hospital pathogens mute

Pathogenic bacteria are becoming resistant to common antibiotics to an ever increasing degree. One of the most difficult germs is Pseudomonas aeruginosa, a...

Im Focus: Artificial Enzymes for Hydrogen Conversion

Scientists from the MPI for Chemical Energy Conversion report in the first issue of the new journal JOULE.

Cell Press has just released the first issue of Joule, a new journal dedicated to sustainable energy research. In this issue James Birrell, Olaf Rüdiger,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

New quantum phenomena in graphene superlattices

19.09.2017 | Physics and Astronomy

A simple additive to improve film quality

19.09.2017 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>