Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Ozone nano-bubble water: a potential treatment for severe gum infections

12.09.2014

A powerful new antiseptic agent, called ozone nano-bubble water, holds promise for the treatment of periodontitis, or severe gum infections, according to research published in the journal Science and Technology of Advanced Materials.

The study published in the journal Science and Technology of Advanced Materials, by Shinichi Arakawa and colleagues at Tokyo Medical and Dental University and Japan's National Institute of Advanced Industrial Science and Technology, evaluated the bactericidal activities of ozone nano-bubble water – also known as NBW3 – against the two main bacterial agents that cause periodontitis as well as its toxicity to human oral tissue cells.


Changes in the microstructure of bacterial cells exposed to NBW3 were assessed using a transmission electron micrograph (TEM). In Escherichia coli cells exposed to NBW3, disruption of the cell wall and the presence of numerous membrane vesicles projecting from the cell wall were observed (A). Moreover, coagulated materials were seen inside the treated cells, in particular, close to the cell membrane (B). However, there was no apparent lysis or gross leakage of cellular cytoplasmic contents from cells. In order to obtain a fuller understanding of the antibacterial mechanism of NBW3, further research is needed to determine how NBW3 damages the cellular structure and how this impacts cellular function.

Their results showed that NBW3 can kill periodontal pathogens within 30 seconds of exposure, yet has only a minor impact on the viability of oral tissue cells after 24 hours of exposure.

Based on their in vitro results, the researchers conclude that NBW3 could become a valuable tool for treating periodontitis. However, since in vitro models cannot be directly compared to real-life clinical situations in which oral antiseptics are diluted with saliva, the authors recommend further research to determine the extent to which NBW3's potency may be reduced by the saliva of dental patients.

Periodontitis is an inflammation of the oral tissues that surround and support our teeth – it is caused by bacteria residing in “biofilms” or dental plaque.

The traditional first step of periodontal treatment involves “mechanical debridement” (i.e. scraping away the dental plaque and dental calculus). Various antiseptics and antibiotics have been used to supplement mechanical debridement.

But antibiotic therapies have several significant drawbacks, such as the selectivity of antimicrobial action, possible development of resistant bacteria, and risk for adverse host reactions. For these reasons, the topical use of a low-cost, broad-spectrum antiseptic agent with low potential for adverse reactions is preferable.

One possible alternative is ozone (O3), which has strong antimicrobial activity against bacteria, fungi, protozoa and viruses, and does not induce microbial resistance. Aqueous ozone is highly biocompatible with oral tissue cells. However, ozonated water must be used within the first 5 to 10 minutes after production to assure its potency.

To address this obstacle, co-author M. Takahashi and K. Chiba developed a patented procedure to produce ozone nano-bubble water. NBW3 retains its oxidation ability for more than six months if protected from exposure to ultraviolet rays. Its high stability allows for the bottling and use of NBW3 as a disinfectant solution.

For further information contact:

Shinichi Arakawa
Tokyo Medical and Dental University
Email: s-arakawa.ltoh@tmd.ac.jp

For more information about NBW3:

Masayoshi Takahashi
National Institute of Advanced Industrial Science and Technology (AIST)
Email: m.taka@aist.go.jp

Associated links

Journal information

Sae Hayakumo, Shinichi Arakawa, Masayoshi Takahashi, Keiko Kondo, Yoshihiro Mano and Yuichi Izumi: Sci. Technol. Adv. Mater. Vol. 15 (2014) p. 055003. DOI:10.1088/1468-6996/15/5/055003

Mikiko Tanifuji | Research SEA News
Further information:
http://www.researchsea.com

Further reports about: Medical Technology adverse antimicrobial bacteria infections oral ozone periodontal reactions

More articles from Health and Medicine:

nachricht Researchers release the brakes on the immune system
18.10.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht Norovirus evades immune system by hiding out in rare gut cells
12.10.2017 | University of Pennsylvania School of Medicine

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Terahertz spectroscopy goes nano

20.10.2017 | Information Technology

Strange but true: Turning a material upside down can sometimes make it softer

20.10.2017 | Materials Sciences

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>