Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Oxygen—key to most life—decelerates many cancer tumors when combined with radiation therapy

A multidisciplinary team at UT Southwestern Medical Center has found that measuring the oxygenation of tumors can be a valuable tool in guiding radiation therapy, opening the door for personalized therapies that keep tumors in check with oxygen enhancement.

In research examining tissue oxygenation levels and predicting radiation response, UT Southwestern scientists led by Dr. Ralph Mason reported in the June 27 online issue of Magnetic Resonance in Medicine that countering hypoxic and aggressive tumors with an “oxygen challenge” – inhaling oxygen while monitoring tumor response – coincides with a greater delay in tumor growth in an irradiated animal model.

Over the past several years, the research of Dr. Mason, professor of radiology and the paper’s senior author, and his colleagues has been building on findings that show lack of oxygen actually stimulates the growth of new blood vessels in tumors and leads to metastasis and genetic instability in cancer. The theory follows that breathing oxygen or enriching the oxygen content of hypoxic (low in oxygen) cancer tissues improves therapy.

In the current study, supported by the National Cancer Institute, smaller tumors based on magnetic resonance imaging were found to be significantly better oxygenated than larger ones. This confirmed previous investigations that show a range of hypoxic environments depending on the size of the tumor.

“The next step is clinical trials to assess tumor response to radiation therapy,” said Dr. Mason, director of the cancer imaging program at the medical center. “Tumors determined to be hypoxic can be evaluated and made responsive through mild and easy-to-administer interventions, such as breathing more oxygen or taking a vasoactive drug. Monitoring the response to oxygen breathing tells us which tumors will benefit.”

If the results are confirmed in humans, the implications for personalized therapies for other cancers could mean fewer radiation treatments, or perhaps, ideally, one single high-dose treatment. Lung cancer, for instance, is a form of the disease whose tumors are poorly oxygenated despite being located in the principle organ charged with oxygenating the blood.

“The ability to stratify tumors based on hypoxia offers new opportunities to tailor therapy to tumor characteristics, potentially enhancing success through personalized medicine,” Dr. Mason said.

Together with Dr. Robert Timmerman, professor of radiation oncology at the Harold C. Simmons Cancer Center, and Dr. Ivan Pedrosa, professor of radiology and the Advanced Imaging Research Center, Dr. Mason is starting clinical trials to assess the effectiveness of oxygenation during treatment with stereotactic body radiation in humans – work that is supported by the Cancer Prevention and Research Institute of Texas (CPRIT) through one of its Multi-Investigator Research Awards.

With CPRIT support, Dr. Mason’s team has worked to understand how low oxygen concentration can cause radiation resistance in tumors. In some cases, the simple addition of oxygen to stereotactic body radiation greatly improves response. The key is to identify those patients who will benefit.

Dr. Rami Hallac, an imaging scientist at the Analytical Imaging and Modeling Center at Children’s Medical Center Dallas, was first author of the published study. Other UT Southwestern researchers involved were Dr. Heling Zhou, postdoctoral researcher; Dr. Rajesh Pidikiti, medical physicist; Dr. Kwang Song, instructor in radiation oncology; Dr. Strahinja Stojadinovic, assistant professor of radiation oncology; Dr. Dawen Zhao, associate professor of radiology; and Dr. Timothy Solberg, professor of radiation oncology. Dr. Peter Peschke of the German Cancer Research Center in Heidelberg, Germany, also contributed.

Visit the Department of Radiology or UT Southwestern’s Harold C. Simmons Cancer Center to learn more about cancer research, screening, and therapy at UT Southwestern, including highly individualized treatments at the region’s only National Cancer Institute-designated center.

About UT Southwestern Medical Center
UT Southwestern, one of the premier academic medical centers in the nation, integrates pioneering biomedical research with exceptional clinical care and education. The institution’s faculty has many distinguished members, including five who have been awarded Nobel Prizes since 1985. Numbering more than 2,700, the faculty is responsible for groundbreaking medical advances and is committed to translating science-driven research quickly to new clinical treatments. UT Southwestern physicians provide medical care in 40 specialties to nearly 90,000 hospitalized patients and oversee more than 1.9 million outpatient visits a year.
Media Contact: Alex Lyda

Alex Lyda | EurekAlert!
Further information:

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Space observation with radar to secure Germany's space infrastructure

Satellites in near-Earth orbit are at risk due to the steady increase in space debris. But their mission in the areas of telecommunications, navigation or weather forecasts is essential for society. Fraunhofer FHR therefore develops radar-based systems which allow the detection, tracking and cataloging of even the smallest particles of debris. Satellite operators who have access to our data are in a better position to plan evasive maneuvers and prevent destructive collisions. From April, 25-29 2018, Fraunhofer FHR and its partners will exhibit the complementary radar systems TIRA and GESTRA as well as the latest radar techniques for space observation across three stands at the ILA Berlin.

The "traffic situation" in space is very tense: the Earth is currently being orbited not only by countless satellites but also by a large volume of space...

Im Focus: Researchers Discover New Anti-Cancer Protein

An international team of researchers has discovered a new anti-cancer protein. The protein, called LHPP, prevents the uncontrolled proliferation of cancer cells in the liver. The researchers led by Prof. Michael N. Hall from the Biozentrum, University of Basel, report in “Nature” that LHPP can also serve as a biomarker for the diagnosis and prognosis of liver cancer.

The incidence of liver cancer, also known as hepatocellular carcinoma, is steadily increasing. In the last twenty years, the number of cases has almost doubled...

Im Focus: Researchers at Fraunhofer monitor re-entry of Chinese space station Tiangong-1

In just a few weeks from now, the Chinese space station Tiangong-1 will re-enter the Earth's atmosphere where it will to a large extent burn up. It is possible that some debris will reach the Earth's surface. Tiangong-1 is orbiting the Earth uncontrolled at a speed of approx. 29,000 km/h.Currently the prognosis relating to the time of impact currently lies within a window of several days. The scientists at Fraunhofer FHR have already been monitoring Tiangong-1 for a number of weeks with their TIRA system, one of the most powerful space observation radars in the world, with a view to supporting the German Space Situational Awareness Center and the ESA with their re-entry forecasts.

Following the loss of radio contact with Tiangong-1 in 2016 and due to the low orbital height, it is now inevitable that the Chinese space station will...

Im Focus: Alliance „OLED Licht Forum“ – Key partner for OLED lighting solutions

Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP, provider of research and development services for OLED lighting solutions, announces the founding of the “OLED Licht Forum” and presents latest OLED design and lighting solutions during light+building, from March 18th – 23rd, 2018 in Frankfurt a.M./Germany, at booth no. F91 in Hall 4.0.

They are united in their passion for OLED (organic light emitting diodes) lighting with all of its unique facets and application possibilities. Thus experts in...

Im Focus: Mars' oceans formed early, possibly aided by massive volcanic eruptions

Oceans formed before Tharsis and evolved together, shaping climate history of Mars

A new scenario seeking to explain how Mars' putative oceans came and went over the last 4 billion years implies that the oceans formed several hundred million...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

New solar solutions for sustainable buildings and cities

23.03.2018 | Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

Latest News

For graphite pellets, just add elbow grease

23.03.2018 | Materials Sciences

Unique communication strategy discovered in stem cell pathway controlling plant growth

23.03.2018 | Agricultural and Forestry Science

Sharpening the X-ray view of the nanocosm

23.03.2018 | Physics and Astronomy

Science & Research
Overview of more VideoLinks >>>