Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Overlooked peptide reveals clues to causes of Alzheimer's disease

04.07.2011
Highly aggregative and neurotoxic amyloid peptide A-beta-43 points the way to new approaches for AD diagnosis and treatment

Researchers at the RIKEN Brain Science Institute (BSI) and their collaborators have shed light on the function of a little-studied amyloid peptide in promoting Alzheimer's disease (AD).

Their surprising findings reveal that the peptide is more abundant, more neurotoxic, and exhibits a higher propensity to aggregate than amyloidogenic agents studied in earlier research, suggesting a potential role in new approaches for preventing AD-causing amyloidosis.

An irreversible, progressive brain disease affecting millions worldwide, Alzheimer's disease is devastating for its victims, robbing them of their memory and cognitive skills and ultimately of their lives. Even after decades of research, however, the causes of AD remain elusive. Two features in the brain, abnormal clumps (senile plaques) and tangled bundles of fibers (neurofibrillary tangles), are known to characterize AD, but there is little consensus on the link between these features and the underlying roots of the disease.

One hypothesis that has attracted widespread support proposes that AD is caused by the buildup of the senile plaques, and in particular of their main constituent, amyloid-â peptides (Aâ). Two major forms of Aâ, Aâ40 and Aâ42, have been associated with genetic mutations causing early-onset AD, and have thus received considerable research attention. The role of longer Aâ species, in contrast, which also exist in the brains of Alzheimer's patients, has not yet been fully investigated.

In their current work, the researchers focused on Aâ43, an amyloid-â peptide found just as often in patient brains as Aâ42, but about which relatively little is known. To study the peptide's role in AD, they generated mice with a mutation causing overproduction of Aâ43, and used a highly sensitive system to distinguish between concentrations of Aâ40, Aâ42 and Aâ43.

Their surprising results reveal that Aâ43 is even more abundant in the brains of AD patients than Aâ40, and more neurotoxic than Aâ42. Aâ43 also exhibits the highest propensity to aggregate and considerably accelerates amyloid pathology. Moreover, unlike the other two Aâ species, which exist in human and mouse brains at birth, Aâ43 levels appear to increase with age, consistent with the pattern of AD onset.

Published in the journal Nature Neuroscience, the findings thus reveal the possible value of Aâ43 as a biomarker for diagnosis of AD and suggest a potential role in new approaches for preventing AD-causing amyloidosis, promising hope to AD sufferers around the world.

Takaomi C. Saido | Research asia research news
Further information:
http://www.riken.jp
http://www.researchsea.com

More articles from Health and Medicine:

nachricht World first: Massive thrombosis removed during early pregnancy
20.07.2017 | Universitätsspital Bern

nachricht Therapy of preterm birth in sight?
19.07.2017 | Universitätsspital Bern

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

Im Focus: On the way to a biological alternative

A bacterial enzyme enables reactions that open up alternatives to key industrial chemical processes

The research team of Prof. Dr. Oliver Einsle at the University of Freiburg's Institute of Biochemistry has long been exploring the functioning of nitrogenase....

Im Focus: The 1 trillion tonne iceberg

Larsen C Ice Shelf rift finally breaks through

A one trillion tonne iceberg - one of the biggest ever recorded -- has calved away from the Larsen C Ice Shelf in Antarctica, after a rift in the ice,...

Im Focus: Laser-cooled ions contribute to better understanding of friction

Physics supports biology: Researchers from PTB have developed a model system to investigate friction phenomena with atomic precision

Friction: what you want from car brakes, otherwise rather a nuisance. In any case, it is useful to know as precisely as possible how friction phenomena arise –...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

Leipzig HTP-Forum discusses "hydrothermal processes" as a key technology for a biobased economy

12.07.2017 | Event News

 
Latest News

Researchers create new technique for manipulating polarization of terahertz radiation

20.07.2017 | Information Technology

High-tech sensing illuminates concrete stress testing

20.07.2017 | Materials Sciences

First direct observation and measurement of ultra-fast moving vortices in superconductors

20.07.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>