Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Ovarian cancer stem cell study puts targeted therapies within reach

07.01.2013
Researchers at Yale School of Medicine have identified a key link between stem cell factors that fuel ovarian cancer's growth and patient prognosis. The study, which paves the way for developing novel targeted ovarian cancer therapies, is published online in the current issue of Cell Cycle.

Lead author Yingqun Huang, M.D., associate professor in the Department of Obstetrics, Gynecology & Reproductive Sciences, and her colleagues have demonstrated a connection between two concepts that are revolutionizing the way cancer is treated.

First, the "cancer stem cell" idea suggests that at the heart of every tumor there is a small subset of difficult-to-identify tumor cells that fuel the growth of the bulk of the tumor. This concept predicts that ordinary therapies typically kill the bulk of tumor cells while leaving a rich environment for continued growth of the stem cell tumor population.

The second concept, dubbed "seed and soil," defines a critical role for the tumor cells' "microenvironment," which is the special environment required for cancer cell growth and spread.

"Both concepts have particular relevance for the treatment of adult solid tumors such as ovarian cancer, which has been notoriously difficult to diagnose and treat," said co-author Nita J. Maihle, M.D., professor in the Department of Obstetrics, Gynecology & Reproductive Sciences and a member of Yale Cancer Center. "Ovarian cancer patients are plagued by recurrences of tumor cells that are resistant to chemotherapy, ultimately leading to uncontrolled cancer growth and death."

In this study, Huang and her colleagues were able to define a molecular basis for the interplay between these two concepts in ovarian cancer. They did this by using sophisticated gene sequencing methods to demonstrate a regulatory link between the stem cell factor Lin28 and the signaling molecule bone morphogenic protein 4 (BMP4).

"These results are supported by the latest molecular ovarian cancer prognosis data, which also suggest an active role for the tumor microenvironment in ovarian carcinogenesis," said Huang and Maihle. "Together these studies reveal new targets for the development of cancer therapies."

Other authors on the study include Wei Ma, Jing Ma, Jie Xu, Chong Qiao, Adam Branscum, Andres Cardenas, Andre T. Baron, Peter Schwartz, and Nita J. Maihle.

The study was funded by a 09SCAYALE14 Connecticut Stem Cell Grant and a 1063338 Albert McKern Scholar Award to Huang, and a Yale School of Medicine "Senior Women in Medicine" Professorship to Nita J. Maihle.

Citation: Cell Cycle Vol. 12, Issue 1

Karen N. Peart | EurekAlert!
Further information:
http://www.yale.edu

More articles from Health and Medicine:

nachricht Fiber optic biosensor-integrated microfluidic chip to detect glucose levels
29.04.2016 | The Optical Society

nachricht Got good fat?
27.04.2016 | Rheinische Friedrich-Wilhelms-Universität Bonn

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Nuclear Pores Captured on Film

Using an ultra fast-scanning atomic force microscope, a team of researchers from the University of Basel has filmed “living” nuclear pore complexes at work for the first time. Nuclear pores are molecular machines that control the traffic entering or exiting the cell nucleus. In their article published in Nature Nanotechnology, the researchers explain how the passage of unwanted molecules is prevented by rapidly moving molecular “tentacles” inside the pore.

Using high-speed AFM, Roderick Lim, Argovia Professor at the Biozentrum and the Swiss Nanoscience Institute of the University of Basel, has not only directly...

Im Focus: 2+1 is Not Always 3 - In the microworld unity is not always strength

If a person pushes a broken-down car alone, there is a certain effect. If another person helps, the result is the sum of their efforts. If two micro-particles are pushing another microparticle, however, the resulting effect may not necessarily be the sum their efforts. A recent study published in Nature Communications, measured this odd effect that scientists call “many body.”

In the microscopic world, where the modern miniaturized machines at the new frontiers of technology operate, as long as we are in the presence of two...

Im Focus: Tiny microbots that can clean up water

Researchers from the Max Planck Institute Stuttgart have developed self-propelled tiny ‘microbots’ that can remove lead or organic pollution from contaminated water.

Working with colleagues in Barcelona and Singapore, Samuel Sánchez’s group used graphene oxide to make their microscale motors, which are able to adsorb lead...

Im Focus: ORNL researchers discover new state of water molecule

Neutron scattering and computational modeling have revealed unique and unexpected behavior of water molecules under extreme confinement that is unmatched by any known gas, liquid or solid states.

In a paper published in Physical Review Letters, researchers at the Department of Energy's Oak Ridge National Laboratory describe a new tunneling state of...

Im Focus: Bionic Lightweight Design researchers of the Alfred Wegener Institute at Hannover Messe 2016

Honeycomb structures as the basic building block for industrial applications presented using holo pyramid

Researchers of the Alfred Wegener Institute (AWI) will introduce their latest developments in the field of bionic lightweight design at Hannover Messe from 25...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

The “AC21 International Forum 2016” is About to Begin

27.04.2016 | Event News

Soft switching combines efficiency and improved electro-magnetic compatibility

15.04.2016 | Event News

Grid-Supportive Buildings Give Boost to Renewable Energy Integration

12.04.2016 | Event News

 
Latest News

Quantum Logical Operations Realized with Single Photons

03.05.2016 | Physics and Astronomy

Discovery of a fundamental limit to the evolution of the genetic code

03.05.2016 | Life Sciences

Cavitation aggressive intensity greatly enhanced using pressure at bubble collapse region

03.05.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>