OU WATER Center Researchers Providing Solutions in Developing Countries

At the University of Oklahoma WATER Center, researchers are working to provide solutions in developing countries where clean, safe water is nonexistent. According to Center Director David Sabatini, 1 billion people in the world do not have a safe water supply, which leads to 2 million deaths a year.

Located within OU’s School of Civil Engineering and Environmental Science, the OU WATER Center relies on Sabatini’s expertise in physiochemical processes for water treatment and that of the Center’s three associate directors: Robert Nairn, treatment wetlands; Randall Kolar, surface and groundwater supply; and Robert Knox, ground water hydrology.

While Sabatini and his colleagues differ in their approach to solving global water challenges, the overarching goal of the Center is to address water dilemmas in countries where the need is the greatest. The Center is becoming recognized as the U.S. leader for work on this global concern.

OU is one of the few universities in the country with a water initiative devoted to developing countries. Since 2005, Center researchers have been making an impact in four distinct areas: teaching, research, service and international leadership.

For example, Sabatini taught an Honors Perspectives/Presidential Dream Course on water in developing countries during the fall 2009 semester. And the OU WATER Center hosted the first international water conference in Norman. At this conference, the first OU Water Prize ($25,000) was awarded to Dr. Stephen Luby, M.D., in celebration of his work in Pakistan and Bangladesh—both countries with severe water resource challenges.

The Center’s research focuses on climate change, water treatment and water contamination and cleanup. Although Center researchers are motivated by matters in developing countries, solutions often come from research on local basis. Developing countries have some of the very same challenges as those found in the City of Norman or at the Tar Creek cleanup site.

“The solutions developed here can be applied in these countries,” remarks Sabatini. OU researchers are studying the redistribution of water resources as a result of climate change; the removal of arsenic and fluoride from ground water; and water contamination and cleanup methods.

Population growth is the leading contributing factor where current or potential water shortages are concerned. Norman and other cities in the state are tackling these same types of concerns. The difference is technology to treat water so that it is clean and safe. “We are finding solutions that will work in countries that need them,” says Sabatini.

“In the United States, we take water for granted,” laments Sabatini. “We turn on a faucet, and water comes out. But in developing countries where people walk for miles each day to bring water to their families, water is precious. They won’t even use it to wash their hands.”

Water and sanitation are key components for good health and a better quality of life. Unlike other scarce resources—energy, for instance, there are no alternatives for clean water. Ultimately, the OU WATER Center is working to bring clean, safe water supplies to the poorest countries in the world.

Learn more about the OU WATER Center at http://water.ou.edu or contact David Sabatini by e-mail at Sabatini@ou.edu.

Media Contact

Jana Smith EurekAlert!

More Information:

http://www.ou.edu

All latest news from the category: Health and Medicine

This subject area encompasses research and studies in the field of human medicine.

Among the wide-ranging list of topics covered here are anesthesiology, anatomy, surgery, human genetics, hygiene and environmental medicine, internal medicine, neurology, pharmacology, physiology, urology and dental medicine.

Back to home

Comments (0)

Write a comment

Newest articles

Superradiant atoms could push the boundaries of how precisely time can be measured

Superradiant atoms can help us measure time more precisely than ever. In a new study, researchers from the University of Copenhagen present a new method for measuring the time interval,…

Ion thermoelectric conversion devices for near room temperature

The electrode sheet of the thermoelectric device consists of ionic hydrogel, which is sandwiched between the electrodes to form, and the Prussian blue on the electrode undergoes a redox reaction…

Zap Energy achieves 37-million-degree temperatures in a compact device

New publication reports record electron temperatures for a small-scale, sheared-flow-stabilized Z-pinch fusion device. In the nine decades since humans first produced fusion reactions, only a few fusion technologies have demonstrated…

Partners & Sponsors