Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

OU WATER Center Researchers Providing Solutions in Developing Countries

20.05.2010
Lessons Learned in Oklahoma Apply Around the World

At the University of Oklahoma WATER Center, researchers are working to provide solutions in developing countries where clean, safe water is nonexistent. According to Center Director David Sabatini, 1 billion people in the world do not have a safe water supply, which leads to 2 million deaths a year.

Located within OU’s School of Civil Engineering and Environmental Science, the OU WATER Center relies on Sabatini’s expertise in physiochemical processes for water treatment and that of the Center’s three associate directors: Robert Nairn, treatment wetlands; Randall Kolar, surface and groundwater supply; and Robert Knox, ground water hydrology.

While Sabatini and his colleagues differ in their approach to solving global water challenges, the overarching goal of the Center is to address water dilemmas in countries where the need is the greatest. The Center is becoming recognized as the U.S. leader for work on this global concern.

OU is one of the few universities in the country with a water initiative devoted to developing countries. Since 2005, Center researchers have been making an impact in four distinct areas: teaching, research, service and international leadership.

For example, Sabatini taught an Honors Perspectives/Presidential Dream Course on water in developing countries during the fall 2009 semester. And the OU WATER Center hosted the first international water conference in Norman. At this conference, the first OU Water Prize ($25,000) was awarded to Dr. Stephen Luby, M.D., in celebration of his work in Pakistan and Bangladesh—both countries with severe water resource challenges.

The Center’s research focuses on climate change, water treatment and water contamination and cleanup. Although Center researchers are motivated by matters in developing countries, solutions often come from research on local basis. Developing countries have some of the very same challenges as those found in the City of Norman or at the Tar Creek cleanup site.

“The solutions developed here can be applied in these countries,” remarks Sabatini. OU researchers are studying the redistribution of water resources as a result of climate change; the removal of arsenic and fluoride from ground water; and water contamination and cleanup methods.

Population growth is the leading contributing factor where current or potential water shortages are concerned. Norman and other cities in the state are tackling these same types of concerns. The difference is technology to treat water so that it is clean and safe. “We are finding solutions that will work in countries that need them,” says Sabatini.

“In the United States, we take water for granted,” laments Sabatini. “We turn on a faucet, and water comes out. But in developing countries where people walk for miles each day to bring water to their families, water is precious. They won’t even use it to wash their hands.”

Water and sanitation are key components for good health and a better quality of life. Unlike other scarce resources—energy, for instance, there are no alternatives for clean water. Ultimately, the OU WATER Center is working to bring clean, safe water supplies to the poorest countries in the world.

Learn more about the OU WATER Center at http://water.ou.edu or contact David Sabatini by e-mail at Sabatini@ou.edu.

Jana Smith | EurekAlert!
Further information:
http://www.ou.edu

More articles from Health and Medicine:

nachricht One gene closer to regenerative therapy for muscular disorders
01.06.2017 | Cincinnati Children's Hospital Medical Center

nachricht The gut microbiota plays a key role in treatment with classic diabetes medication
01.06.2017 | University of Gothenburg

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>