Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Osteoporosis drug stops growth of breast cancer cells, even in resistant tumors

17.06.2013
A drug approved in Europe to treat osteoporosis has now been shown to stop the growth of breast cancer cells, even in cancers that have become resistant to current targeted therapies, according to a Duke Cancer Institute study.

The findings, presented June 15, 2013, at the annual Endocrine Society meeting in San Francisco, indicate that the drug bazedoxifene packs a powerful one-two punch that not only prevents estrogen from fueling breast cancer cell growth, but also flags the estrogen receptor for destruction.

"We found bazedoxifene binds to the estrogen receptor and interferes with its activity, but the surprising thing we then found was that it also degrades the receptor; it gets rid of it," said senior author Donald McDonnell, PhD, chair of Duke's Department of Pharmacology and Cancer Biology.

In animal and cell culture studies, the drug inhibited growth both in estrogen-dependent breast cancer cells and in cells that had developed resistance to the anti-estrogen tamoxifen and/or to the aromatase inhibitors, two of the most widely used types of drugs to prevent and treat estrogen-dependent breast cancer. Currently, if breast cancer cells develop resistance to these therapies, patients are usually treated with toxic chemotherapy agents that have significant side effects.

Bazedoxifene is a pill that, like tamoxifen, belongs to a class of drugs known as specific estrogen receptor modulators (SERMs). These drugs are distinguished by their ability to behave like estrogen in some tissues, while significantly blocking estrogen action in other tissues. But unlike tamoxifen, bazedoxifene has some of the properties of a newer group of drugs, known as selective estrogen receptor degraders, or SERDs, which can target the estrogen receptor for destruction.

"Because the drug is removing the estrogen receptor as a target by degradation, it is less likely the cancer cell can develop a resistance mechanism because you are removing the target," said lead author Suzanne Wardell, PhD, a research scientist working in McDonnell's lab.

Many investigators had assumed that once breast cancer cells developed resistance to tamoxifen, they would be resistant to all drugs that target the estrogen receptor, McDonnell explained.

"We discovered that the estrogen receptor is still a good target, even after it resistance to tamoxifen has developed," he said.

The investigators tested a variety of breast cancer cell types, including tamoxifen-sensitive cells that are resistant to the drug lapatinib, another targeted therapy that is used to treat patients with advanced breast cancer whose tumors contain the mutant HER2 gene. These cells had previously been shown to reactivate estrogen signaling in order to acquire drug resistance. In this cell type, bazedoxifene also potently inhibited cell growth.

Paradoxically, in bone tissue, bazedoxifene mimics the action of estrogen, helping protect it from destruction. Because bazedoxifene has already undergone safety and efficacy studies as a treatment for osteoporosis, it may be a viable near-term option for patients with advanced breast cancer whose tumors have become resistant to other treatment options, Wardell reported. In clinical trials, the most often reported side effect was hot flashes in the bazedoxifene treatment groups.

The study was funded by a research grant from Pfizer Pharmaceuticals, maker of bazedoxifene.

In addition to Wardell and McDonnell, Erik Nelson and Christina Chao of the Department of Pharmacology and Cancer Biology, Duke University School of Medicine, contributed to the research.

Rachel Harrison | EurekAlert!
Further information:
http://www.duke.edu

More articles from Health and Medicine:

nachricht Cystic fibrosis alters the structure of mucus in airways
28.06.2017 | University of Iowa Health Care

nachricht Mice provide insight into genetics of autism spectrum disorders
28.06.2017 | University of California - Davis

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Supersensitive through quantum entanglement

28.06.2017 | Physics and Astronomy

X-ray photoelectron spectroscopy under real ambient pressure conditions

28.06.2017 | Physics and Astronomy

Mice provide insight into genetics of autism spectrum disorders

28.06.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>