Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Orthopedic Clinic of JGU Medical Center deploys new system for therapy of metastatic spinal tumors

11.07.2011
New method allows for the concurrent treatment of spinal tumors and stabilization of the spine

The Orthopedic Clinic and Policlinic at the University Medical Center of Johannes Gutenberg University Mainz (JGU), Germany has recently deployed a new system for the treatment of spinal tumors for the first time.

This treatment is a combination of the so-called radiofrequency ablation, which uses the heat energy of radio frequency waves to ablate and destroy tumors, and a subsequent kyphoplasty, by which the spine is stabilized through the injection of bone cement as filler material. A recently started single-center study involving 10 evaluable patients suffering from painful metastatic spinal tumors is now expected to provide information about the efficacy of this method.

"The results of this trial will provide critical information about the safety and efficacy of minimally invasive targeted radiofrequency ablation to treat vertebral metastates," says Professor Dr med Andreas Kurth, Director of the Orthopedic Clinic at the University Medical Center of Johannes Gutenberg University Mainz. "We are confident that this advanced method employed for tumor reduction and simultaneous stabilization of the spine through bone-sparing kyphoplasty will minimize the cancer patient's severe discomfort while stabilizing the vertebra."

The Spinal Tumor Ablation with Radiofrequency (STAR)TM System of DFINE, Inc., which was jointly developed with the Orthopedic Clinic of Mainz University Medical Center, is already FDA-approved as a device permitting minimally invasive targeted tumor necrosis of metastatic spinal tumors. Following ablation with the STAR System, vertebra(e) will be stabilized with ultra-high viscosity cement. This minimally invasive procedure generally takes about an hour. The data to be perceived from the Evaluation of Combined RF Ablation and Cement Delivery in Painful Tumors of the Spine Trial (AbCT) are to support the filing for Conformité Européenne (CE) Mark certification in 2012.

In the United States alone, 13 percent (190,000 cases) of the 1.5 million new cancer cases diagnosed annually will develop spinal mestasis. Beyond narcotic administration and traditional pain management, the primary modality for treating spinal metastases is external beam radiation. While this represents the current standard of care for treating metastatic cancer, pain relief often requires multiple treatments and weeks to be effective. In addition, radiation therapy often requires that patients suspend chemotherapy treatment of the primary cancer due to cumulative toxicity. Using the DFINE minimally invasive procedure to treat painful metastatic spinal lesions provides immediate pain relief and an improved quality of life. There is also minimal, if any, delay in systemic, curative therapy of the primary cancer therapy - a significant benefit for the patient.

The STARTM System of DFINE incorporates a unique bipolar navigational instrument, which offers unparalleled control and enables the physician to overcome many of the technical challenges which have limited targeted ablation in boney tissues to date. "Due to the critical anatomy in the spine and the invasive nature of conventional surgical procedures to treat spinal metastases, we believe DFINE's minimally invasive therapy that allows targeted delivery of radiofrequency energy for ablation of tumors may provide the fastest and most effective relief from the painful effects of spinal metastases, and thereby represents a significant advance in the patient's treatment," states Kurth.

About the University Medical Center of Johannes Gutenberg University Mainz, Germany
The University Medical Center of Johannes Gutenberg University Mainz (JGU) is the only institution of its kind in the German state of Rhineland-Palatinate. The Orthopedic University Clinic and Policlinic is one of the oldest and most-respected centers in Germany, focusing on the research of orthopedic oncology and cancer of the musculoskeletal system. Teaching and research are closely linked with medical care facilities. Some 3,500 students are at any one time attending courses on medicine and dentistry at Mainz.

For further information, please visit www.unimedizin-mainz.de.

About DFINE, Inc.
DFINE is dedicated to relieving pain and improving the quality of life for patients suffering from vertebral pathologies through innovative, minimally invasive therapies. DFINE’s devices are built upon an extensible radio frequency (RF) platform that presently covers two procedural applications. The first application, the StabiliT® Vertebral Augmentation System and StabiliT® ER2 Bone Cement, harnesses the power of radiofrequency energy to repair fractured vertebrae. The company has received FDA 510(k) clearance for a second application, the STARTM Ablation System, for the treatment of spinal tumors and plans to submit for CE-Mark approval following completion of the AbCT Study at Mainz University Medical Center. The STAR system will be commercially available in the United States later this year. DFINE is based in San Jose, Calif. and is privately held.

For more information, visit www.dfineinc.com

Petra Giegerich | idw
Further information:
http://www.unimedizin-mainz.de

More articles from Health and Medicine:

nachricht Millions through license revenues
27.04.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht New High-Performance Center Translational Medical Engineering
26.04.2017 | Fraunhofer ITEM

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>