Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Orthopedic Clinic of JGU Medical Center deploys new system for therapy of metastatic spinal tumors

11.07.2011
New method allows for the concurrent treatment of spinal tumors and stabilization of the spine

The Orthopedic Clinic and Policlinic at the University Medical Center of Johannes Gutenberg University Mainz (JGU), Germany has recently deployed a new system for the treatment of spinal tumors for the first time.

This treatment is a combination of the so-called radiofrequency ablation, which uses the heat energy of radio frequency waves to ablate and destroy tumors, and a subsequent kyphoplasty, by which the spine is stabilized through the injection of bone cement as filler material. A recently started single-center study involving 10 evaluable patients suffering from painful metastatic spinal tumors is now expected to provide information about the efficacy of this method.

"The results of this trial will provide critical information about the safety and efficacy of minimally invasive targeted radiofrequency ablation to treat vertebral metastates," says Professor Dr med Andreas Kurth, Director of the Orthopedic Clinic at the University Medical Center of Johannes Gutenberg University Mainz. "We are confident that this advanced method employed for tumor reduction and simultaneous stabilization of the spine through bone-sparing kyphoplasty will minimize the cancer patient's severe discomfort while stabilizing the vertebra."

The Spinal Tumor Ablation with Radiofrequency (STAR)TM System of DFINE, Inc., which was jointly developed with the Orthopedic Clinic of Mainz University Medical Center, is already FDA-approved as a device permitting minimally invasive targeted tumor necrosis of metastatic spinal tumors. Following ablation with the STAR System, vertebra(e) will be stabilized with ultra-high viscosity cement. This minimally invasive procedure generally takes about an hour. The data to be perceived from the Evaluation of Combined RF Ablation and Cement Delivery in Painful Tumors of the Spine Trial (AbCT) are to support the filing for Conformité Européenne (CE) Mark certification in 2012.

In the United States alone, 13 percent (190,000 cases) of the 1.5 million new cancer cases diagnosed annually will develop spinal mestasis. Beyond narcotic administration and traditional pain management, the primary modality for treating spinal metastases is external beam radiation. While this represents the current standard of care for treating metastatic cancer, pain relief often requires multiple treatments and weeks to be effective. In addition, radiation therapy often requires that patients suspend chemotherapy treatment of the primary cancer due to cumulative toxicity. Using the DFINE minimally invasive procedure to treat painful metastatic spinal lesions provides immediate pain relief and an improved quality of life. There is also minimal, if any, delay in systemic, curative therapy of the primary cancer therapy - a significant benefit for the patient.

The STARTM System of DFINE incorporates a unique bipolar navigational instrument, which offers unparalleled control and enables the physician to overcome many of the technical challenges which have limited targeted ablation in boney tissues to date. "Due to the critical anatomy in the spine and the invasive nature of conventional surgical procedures to treat spinal metastases, we believe DFINE's minimally invasive therapy that allows targeted delivery of radiofrequency energy for ablation of tumors may provide the fastest and most effective relief from the painful effects of spinal metastases, and thereby represents a significant advance in the patient's treatment," states Kurth.

About the University Medical Center of Johannes Gutenberg University Mainz, Germany
The University Medical Center of Johannes Gutenberg University Mainz (JGU) is the only institution of its kind in the German state of Rhineland-Palatinate. The Orthopedic University Clinic and Policlinic is one of the oldest and most-respected centers in Germany, focusing on the research of orthopedic oncology and cancer of the musculoskeletal system. Teaching and research are closely linked with medical care facilities. Some 3,500 students are at any one time attending courses on medicine and dentistry at Mainz.

For further information, please visit www.unimedizin-mainz.de.

About DFINE, Inc.
DFINE is dedicated to relieving pain and improving the quality of life for patients suffering from vertebral pathologies through innovative, minimally invasive therapies. DFINE’s devices are built upon an extensible radio frequency (RF) platform that presently covers two procedural applications. The first application, the StabiliT® Vertebral Augmentation System and StabiliT® ER2 Bone Cement, harnesses the power of radiofrequency energy to repair fractured vertebrae. The company has received FDA 510(k) clearance for a second application, the STARTM Ablation System, for the treatment of spinal tumors and plans to submit for CE-Mark approval following completion of the AbCT Study at Mainz University Medical Center. The STAR system will be commercially available in the United States later this year. DFINE is based in San Jose, Calif. and is privately held.

For more information, visit www.dfineinc.com

Petra Giegerich | idw
Further information:
http://www.unimedizin-mainz.de

More articles from Health and Medicine:

nachricht One gene closer to regenerative therapy for muscular disorders
01.06.2017 | Cincinnati Children's Hospital Medical Center

nachricht The gut microbiota plays a key role in treatment with classic diabetes medication
01.06.2017 | University of Gothenburg

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>