Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Orbital samples with sight-saving potential

12.12.2013
Those who travel to space are rewarded with a beautiful sight - planet Earth.

But the effects of space travel on the human sense of sight aren't so beautiful. More than 30 percent of astronauts who returned from two-week space shuttle missions and 60 percent who spent six months aboard the International Space Station were diagnosed with eye problems.


This is retina tissue from a normal mouse (A) and after spaceflight (B) indicate oxidative damage, identified with green fluorescence. Nuclei are stained blue.

Credit: Radiation Research

Two recent investigations examined mechanisms that may explain eye changes in spaceflight, help find ways to minimize this health risk to astronauts and eventually prevent and treat eye diseases on Earth.

Mice were flown aboard shuttle flights STS-133 in March 2011 and STS-135 in July 2011 as part of the Commercial Biomedical Testing Module-2 (CBTM-2) and CBTM-3 investigations into how space affects muscle and bones. These sets of mice found second life, contributing to other studies through a tissue-sharing program. Two studies used eye tissue from the mice to provide the first direct evidence that spaceflight causes cellular-level damage that has the potential to cause long-term vision problems.

Susana Zanello, Universities Space Research Association scientist at NASA's Johnson Space Center in Houston, examined eye tissue for changes in gene expression in the retina—the sensory tissue at the back of the eye. That study is the subject of a paper, "Spaceflight Effects and Molecular Responses in the Mouse Eye: Preliminary Observations after Shuttle Mission STS-133," recently published in Gravitational and Space Research.

Results from a study of mice from the second flight were detailed by Xiao W. Mao, MD, a researcher in the Division of Radiation Research at Loma Linda University and Medical Center in California, and her colleagues in "Spaceflight Environment Induces Mitochondrial Oxidative Damage in Ocular Tissue," published in Radiation Research.

Both studies implicated oxidative stress in eye damage. Spaceflight exposes astronauts - and mice - to radiation, hypothermia, hypoxia and variations in gravity, all of which may play roles in tissue injury, and, in particular, oxidative stress. Oxidative stress reflects an imbalance between the reactive oxygen that is generated by normal cell metabolism and the cell's ability to handle toxic byproducts from that metabolism.

The imbalance created by oxidative stress produces peroxides and free radicals, which contribute to a number of degenerative conditions, including aging. They also are known to cause damage to DNA, proteins, cell membranes and organelles inside cells. These organelles include mitochondria that convert oxygen and nutrients into energy. Mitochondria are particularly sensitive to oxidative stress and, therefore, to the effects of microgravity and radiation in space. Mitochondria are thought to play an important role in damage to the retina and have been linked to age- and disease-related eye problems.

Mao's study examined mitochondria-associated gene expression in the mouse eye tissue and found significant changes in several genes involved in oxidative stress response. "We measured 84 genes and found nine that are really critical for developing these changes and associated with damage," she said. "These changes were after short-term flight and might be reversible or might deteriorate over time. But the data so far do indicate a risk to astronauts from oxidative changes."

In the STS-133 samples, Zanello found increased expression of genes involved in response to oxidative stress in retina tissue. "We saw this effect immediately after landing, which means it was a defensive increase in response to oxidative stress," she said. Also notable was that a week after spaceflight, the response had decreased, indicating that the damage may be reversible. "That opens the door to the possibility of countermeasures, such as nutritional anti-oxidants," Zanello said.

The Zanello study also reports the presence of two indicators of optic nerve damage, glial fibrilar acidic protein (GFAP) and beta-amyloid. GFAP is known to be elevated by stress and inflammation in the central nervous system and present following retina injury. Studies have found beta-amyloid in tissue following traumatic brain injury and as evidence of optic nerve damage in shaken-baby syndrome.

Both researchers say more work needs to be done to confirm these results and to develop appropriate countermeasures. This follow-up investigation also could use the tissue-sharing program, but researchers say they need a larger number of samples from model organisms that had longer exposure to space.

These investigations move scientists closer to development of countermeasures, such as drugs or dietary supplements, to protect the eyes and vision of astronauts. People on Earth with eye problems related to aging, such as macular degeneration, and diseases, such as diabetic glaucoma, also would benefit. That will mean more people can enjoy beautiful sights, whether in space or on the ground.

Laura Niles | EurekAlert!
Further information:
http://www.nasa.gov

More articles from Health and Medicine:

nachricht 3D images of cancer cells in the body: Medical physicists from Halle present new method
16.05.2018 | Martin-Luther-Universität Halle-Wittenberg

nachricht Better equipped in the fight against lung cancer
16.05.2018 | Friedrich-Alexander-Universität Erlangen-Nürnberg

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

Im Focus: Computer-Designed Customized Regenerative Heart Valves

Cardiovascular tissue engineering aims to treat heart disease with prostheses that grow and regenerate. Now, researchers from the University of Zurich, the Technical University Eindhoven and the Charité Berlin have successfully implanted regenerative heart valves, designed with the aid of computer simulations, into sheep for the first time.

Producing living tissue or organs based on human cells is one of the main research fields in regenerative medicine. Tissue engineering, which involves growing...

Im Focus: Light-induced superconductivity under high pressure

A team of scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg investigated optically-induced superconductivity in the alkali-doped fulleride K3C60under high external pressures. This study allowed, on one hand, to uniquely assess the nature of the transient state as a superconducting phase. In addition, it unveiled the possibility to induce superconductivity in K3C60 at temperatures far above the -170 degrees Celsius hypothesized previously, and rather all the way to room temperature. The paper by Cantaluppi et al has been published in Nature Physics.

Unlike ordinary metals, superconductors have the unique capability of transporting electrical currents without any loss. Nowadays, their technological...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Supersonic waves may help electronics beat the heat

18.05.2018 | Power and Electrical Engineering

Keeping a Close Eye on Ice Loss

18.05.2018 | Information Technology

CrowdWater: An App for Flood Research

18.05.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>