Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Optimized Radiation for Prostate Cancer Therapy

16.10.2008
The determination of the precise anatomical location of a tumor is the prerequisite for setting optimal parameters for radiation treatment of prostate cancer.

This approach guarantees that the ionizing radiation only destroys tumorous cells and does not affect other organs in the vicinity of the prostate. In a cooperative study with Innsbruck Medical University and the East-Vienna Center of Social Medicine, two physicists of Vienna University of Technology (TU), evaluated the mean deviation of radiation parameters for prostate cancers and compared various sources of radiation.

Movement inaccuracies of up to two centimeters may occur in prostate radiation. “During the radiation treatment, patients have to lie on a table for some 20 minutes without moving. Over time, the muscles relax and the pelvis drops. As a consequence, the radiation may focus on the bladder or other organs. In our calculations, we concentrated on the precision of localizing the prostate and on improvement potentials in treatment,” explained Karin Poljanc, Assistant Professor at the Atomic Institute of Austrian Universities.

In a study conducted in cooperation with SMZ Ost (East-Vienna Center of Social Medicine, Danube Hospital), Poljanc and her research associates, Tanja Futschek and Leila Teymournia, used a number of ultrasound examinations that allowed for a precise localization of the patients’ organs from the outside. In a next step, the scientists analyzed the positioning of 60 patients, and evaluated the deviation of radiation in various spatial directions, such as to the right or left, and upward or downward (using 420 radiation plans for thirty patients). While it takes more time, an ultrasound system makes the shifts in position visible and traceable. If the deviation exceeds 0.8 cm, the radiology technicians are responsible for returning the patient to the correct position to ensure that the radiation only targets the specified area. In the subsequent study phase, Poljanc and her group calculated normal tissue compensation rates and the probability of tumor control. “This provides us with an overview of the probability that the tumor is targeted directly and the probability of side effects for individual patients,” notes Poljanc. These approaches serve as forecasts and provide clues for the likelihood of healing.

After a study period of some 2.5 years, with generous sponsorship of the Anniversary Fund of the Austrian National Bank, the scientists were able to implement the calculated average positioning inaccuracies in a radiation planning system. Sums up Leila Teymournia: “Depending on the calculation model used, the normal tissue compensation rate can vary widely in the results. While the use of Model A may yield a negligible complication rate, the same process calculated with Model B shows a deviation of up to 40 percent.” Due to the absence of biological parameters, major discrepancies may result with different models. Nevertheless, the results of calculations can provide physicians with data for improving patient positioning accuracy and therefore, and improvement of treatment success.

As part of their study of different radiation sources, Karin Poljanc, Tanja Futschek, and Leila Teymournia found that localization aids, such as ultrasound systems, are indispensable for accurate proton therapy of prostate carcinomas. In most cases, this combination leads to therapy results with a high level of tissue preservation.

The future establishment of the cancer research and therapy center “Med-AUSTRON” in Wiener Neustadt will implement such a treatment method in Austria.

Daniela Hallegger | alfa
Further information:
http://www.tuwien.ac.at/pr
http://www.tuwien.ac.at/aktuelles/news_detail/article/5210/

Further reports about: Prostate Cancer Therapy Radiation prostate radiation treatment therapy

More articles from Health and Medicine:

nachricht Biofilm discovery suggests new way to prevent dangerous infections
23.05.2017 | University of Texas at Austin

nachricht Another reason to exercise: Burning bone fat -- a key to better bone health
19.05.2017 | University of North Carolina Health Care

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

How herpesviruses win the footrace against the immune system

26.05.2017 | Life Sciences

Water forms 'spine of hydration' around DNA, group finds

26.05.2017 | Life Sciences

First Juno science results supported by University of Leicester's Jupiter 'forecast'

26.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>