Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Optimized Radiation for Prostate Cancer Therapy

16.10.2008
The determination of the precise anatomical location of a tumor is the prerequisite for setting optimal parameters for radiation treatment of prostate cancer.

This approach guarantees that the ionizing radiation only destroys tumorous cells and does not affect other organs in the vicinity of the prostate. In a cooperative study with Innsbruck Medical University and the East-Vienna Center of Social Medicine, two physicists of Vienna University of Technology (TU), evaluated the mean deviation of radiation parameters for prostate cancers and compared various sources of radiation.

Movement inaccuracies of up to two centimeters may occur in prostate radiation. “During the radiation treatment, patients have to lie on a table for some 20 minutes without moving. Over time, the muscles relax and the pelvis drops. As a consequence, the radiation may focus on the bladder or other organs. In our calculations, we concentrated on the precision of localizing the prostate and on improvement potentials in treatment,” explained Karin Poljanc, Assistant Professor at the Atomic Institute of Austrian Universities.

In a study conducted in cooperation with SMZ Ost (East-Vienna Center of Social Medicine, Danube Hospital), Poljanc and her research associates, Tanja Futschek and Leila Teymournia, used a number of ultrasound examinations that allowed for a precise localization of the patients’ organs from the outside. In a next step, the scientists analyzed the positioning of 60 patients, and evaluated the deviation of radiation in various spatial directions, such as to the right or left, and upward or downward (using 420 radiation plans for thirty patients). While it takes more time, an ultrasound system makes the shifts in position visible and traceable. If the deviation exceeds 0.8 cm, the radiology technicians are responsible for returning the patient to the correct position to ensure that the radiation only targets the specified area. In the subsequent study phase, Poljanc and her group calculated normal tissue compensation rates and the probability of tumor control. “This provides us with an overview of the probability that the tumor is targeted directly and the probability of side effects for individual patients,” notes Poljanc. These approaches serve as forecasts and provide clues for the likelihood of healing.

After a study period of some 2.5 years, with generous sponsorship of the Anniversary Fund of the Austrian National Bank, the scientists were able to implement the calculated average positioning inaccuracies in a radiation planning system. Sums up Leila Teymournia: “Depending on the calculation model used, the normal tissue compensation rate can vary widely in the results. While the use of Model A may yield a negligible complication rate, the same process calculated with Model B shows a deviation of up to 40 percent.” Due to the absence of biological parameters, major discrepancies may result with different models. Nevertheless, the results of calculations can provide physicians with data for improving patient positioning accuracy and therefore, and improvement of treatment success.

As part of their study of different radiation sources, Karin Poljanc, Tanja Futschek, and Leila Teymournia found that localization aids, such as ultrasound systems, are indispensable for accurate proton therapy of prostate carcinomas. In most cases, this combination leads to therapy results with a high level of tissue preservation.

The future establishment of the cancer research and therapy center “Med-AUSTRON” in Wiener Neustadt will implement such a treatment method in Austria.

Daniela Hallegger | alfa
Further information:
http://www.tuwien.ac.at/pr
http://www.tuwien.ac.at/aktuelles/news_detail/article/5210/

Further reports about: Prostate Cancer Therapy Radiation prostate radiation treatment therapy

More articles from Health and Medicine:

nachricht GLUT5 fluorescent probe fingerprints cancer cells
20.04.2018 | Michigan Technological University

nachricht Scientists re-create brain neurons to study obesity and personalize treatment
20.04.2018 | Cedars-Sinai Medical Center

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: BAM@Hannover Messe: innovative 3D printing method for space flight

At the Hannover Messe 2018, the Bundesanstalt für Materialforschung und-prüfung (BAM) will show how, in the future, astronauts could produce their own tools or spare parts in zero gravity using 3D printing. This will reduce, weight and transport costs for space missions. Visitors can experience the innovative additive manufacturing process live at the fair.

Powder-based additive manufacturing in zero gravity is the name of the project in which a component is produced by applying metallic powder layers and then...

Im Focus: Molecules Brilliantly Illuminated

Physicists at the Laboratory for Attosecond Physics, which is jointly run by Ludwig-Maximilians-Universität and the Max Planck Institute of Quantum Optics, have developed a high-power laser system that generates ultrashort pulses of light covering a large share of the mid-infrared spectrum. The researchers envisage a wide range of applications for the technology – in the early diagnosis of cancer, for instance.

Molecules are the building blocks of life. Like all other organisms, we are made of them. They control our biorhythm, and they can also reflect our state of...

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Getting electrons to move in a semiconductor

25.04.2018 | Physics and Astronomy

Reconstructing what makes us tick

25.04.2018 | Physics and Astronomy

Cheap 3-D printer can produce self-folding materials

25.04.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>